1
|
Selim KA, Tremiño L, Marco-Marín C, Alva V, Espinosa J, Contreras A, Hartmann MD, Forchhammer K, Rubio V. Functional and structural characterization of PII-like protein CutA does not support involvement in heavy metal tolerance and hints at a small-molecule carrying/signaling role. FEBS J 2020; 288:1142-1162. [PMID: 32599651 DOI: 10.1111/febs.15464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The PII-like protein CutA is annotated as being involved in Cu2+ tolerance, based on analysis of Escherichia coli mutants. However, the precise cellular function of CutA remains unclear. Our bioinformatic analysis reveals that CutA proteins are universally distributed across all domains of life. Based on sequence-based clustering, we chose representative cyanobacterial CutA proteins for physiological, biochemical, and structural characterization and examined their involvement in heavy metal tolerance, by generating CutA mutants in filamentous Nostoc sp. and in unicellular Synechococcus elongatus. However, we were unable to find any involvement of cyanobacterial CutA in metal tolerance under various conditions. This prompted us to re-examine experimentally the role of CutA in protecting E. coli from Cu2+ . Since we found no effect on copper tolerance, we conclude that CutA plays a different role that is not involved in metal protection. We resolved high-resolution CutA structures from Nostoc and S. elongatus. Similarly to their counterpart from E. coli and to canonical PII proteins, cyanobacterial CutA proteins are trimeric in solution and in crystal structure; however, no binding affinity for small signaling molecules or for Cu2+ could be detected. The clefts between the CutA subunits, corresponding to the binding pockets of PII proteins, are formed by conserved aromatic and charged residues, suggesting a conserved binding/signaling function for CutA. In fact, we find binding of organic Bis-Tris/MES molecules in CutA crystal structures, revealing a strong tendency of these pockets to accommodate cargo. This highlights the need to search for the potential physiological ligands and for their signaling functions upon binding to CutA. DATABASES: Structural data are available in Protein Data Bank (PDB) under the accession numbers 6GDU, 6GDV, 6GDW, 6GDX, 6T76, and 6T7E.
Collapse
Affiliation(s)
- Khaled A Selim
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Germany.,Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lorena Tremiño
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Germany
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| |
Collapse
|
2
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
3
|
Phelan JP, Kern A, Ramsey ME, Lundt ME, Sharma B, Lin T, Gao L, Norris SJ, Hyde JA, Skare JT, Hu LT. Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes tick vector. PLoS Pathog 2019; 15:e1007644. [PMID: 31086414 PMCID: PMC6516651 DOI: 10.1371/journal.ppat.1007644] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease in humans, is maintained in a complex biphasic life cycle, which alternates between tick and vertebrate hosts. To successfully survive and complete its enzootic cycle, B. burgdorferi adapts to diverse hosts by regulating genes required for survival in specific environments. Here we describe the first ever use of transposon insertion sequencing (Tn-seq) to identify genes required for B. burgdorferi survival in its tick host. We found that insertions into 46 genes resulted in a complete loss of recovery of mutants from larval Ixodes ticks. Insertions in an additional 56 genes resulted in a >90% decrease in fitness. The screen identified both previously known and new genes important for larval tick survival. Almost half of the genes required for survival in the tick encode proteins of unknown function, while a significant portion (over 20%) encode membrane-associated proteins or lipoproteins. We validated the results of the screen for five Tn mutants by performing individual competition assays using mutant and complemented strains. To better understand the role of one of these genes in tick survival, we conducted mechanistic studies of bb0017, a gene previously shown to be required for resistance against oxidative stress. In this study we show that BB0017 affects the regulation of key borrelial virulence determinants. The application of Tn-seq to in vivo screening of B. burgdorferi in its natural vector is a powerful tool that can be used to address many different aspects of the host pathogen interaction. Borrelia burgdorferi, the causative agent of Lyme disease, must adjust to environmental changes as it moves between its tick and vertebrate hosts. We performed a screen of a B. burgdorferi transposon library using massively parallel sequencing (Tn-seq) to identify fitness defects involved in survival in its tick host. This screen accurately identified genes known to cause decreased fitness for tick survival and identified new genes involved in B. burgdorferi survival in ticks. All of the genes tested individually confirmed the Tn-seq results. One of the genes identified encodes a protein whose function was previously unknown that appears to be involved in regulating expression of proteins known to be involved in environmental adaptation. Tn-seq is a powerful tool for understanding vector-pathogen interactions and may reveal new opportunities for interrupting the infectious cycle of vector-borne diseases.
Collapse
Affiliation(s)
- James P. Phelan
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- * E-mail: (JPP); (STH)
| | - Aurelie Kern
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Meghan E. Ramsey
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Maureen E. Lundt
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Bijaya Sharma
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Tao Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lihui Gao
- MD Anderson Cancer Center Thoracic & Cardiovascular Surgery, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health, Houston, Texas, United States of America
| | - Jenny A. Hyde
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, Texas A & M University Health Science Center, Bryan, Texas, United States of America
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
- * E-mail: (JPP); (STH)
| |
Collapse
|
4
|
Bessa DS, Maschietto M, Aylwin CF, Canton APM, Brito VN, Macedo DB, Cunha-Silva M, Palhares HMC, de Resende EAMR, Borges MDF, Mendonca BB, Netchine I, Krepischi ACV, Lomniczi A, Ojeda SR, Latronico AC. Methylome profiling of healthy and central precocious puberty girls. Clin Epigenetics 2018; 10:146. [PMID: 30466473 PMCID: PMC6251202 DOI: 10.1186/s13148-018-0581-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Background Recent studies demonstrated that changes in DNA methylation (DNAm) and inactivation of two imprinted genes (MKRN3 and DLK1) alter the onset of female puberty. We aimed to investigate the association of DNAm profiling with the timing of human puberty analyzing the genome-wide DNAm patterns of peripheral blood leukocytes from ten female patients with central precocious puberty (CPP) and 33 healthy girls (15 pre- and 18 post-pubertal). For this purpose, we performed comparisons between the groups: pre- versus post-pubertal, CPP versus pre-pubertal, and CPP versus post-pubertal. Results Analyzing the methylome changes associated with normal puberty, we identified 120 differentially methylated regions (DMRs) when comparing pre- and post-pubertal healthy girls. Most of these DMRs were hypermethylated in the pubertal group (99%) and located on the X chromosome (74%). Only one genomic region, containing the promoter of ZFP57, was hypomethylated in the pubertal group. ZFP57 is a transcriptional repressor required for both methylation and imprinting of multiple genomic loci. ZFP57 expression in the hypothalamus of female rhesus monkeys increased during peripubertal development, suggesting enhanced repression of downstream ZFP57 target genes. Fourteen other zinc finger (ZNF) genes were related to the hypermethylated DMRs at normal puberty. Analyzing the methylome changes associated with CPP, we demonstrated that the patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Forty-eight ZNF genes were identified as having hypermethylated CpG sites in CPP. Conclusion Methylome profiling of girls at normal and precocious puberty revealed a widespread pattern of DNA hypermethylation, indicating that the pubertal process in humans is associated with specific changes in epigenetically driven regulatory control. Moreover, changes in methylation of several ZNF genes appear to be a distinct epigenetic modification underlying the initiation of human puberty. Electronic supplementary material The online version of this article (10.1186/s13148-018-0581-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danielle S Bessa
- Division of Endocrinology & Metabolism, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | | | - Ana P M Canton
- Division of Endocrinology & Metabolism, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, SP, Brazil.,Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Vinicius N Brito
- Division of Endocrinology & Metabolism, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Delanie B Macedo
- Division of Endocrinology & Metabolism, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marina Cunha-Silva
- Division of Endocrinology & Metabolism, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Heloísa M C Palhares
- Division of Endocrinology, Triangulo Mineiro Federal University, Uberaba, MG, Brazil
| | | | | | - Berenice B Mendonca
- Division of Endocrinology & Metabolism, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Irene Netchine
- Sorbonne Université, INSERM, UMR_S 938 Centre de Recherche Saint Antoine, APHP, Hôpital Armand Trousseau, Explorations Fonctionnelles Endocriniennes, Paris, France
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alejandro Lomniczi
- Division of Genetics, Oregon National Primate Research Center/OHSU, Beaverton, OR, USA.,Division of Neuroscience, Oregon National Primate Research Center/OHSU, Beaverton, OR, USA
| | - Sergio R Ojeda
- Division of Neuroscience, Oregon National Primate Research Center/OHSU, Beaverton, OR, USA
| | - Ana Claudia Latronico
- Division of Endocrinology & Metabolism, Development Endocrinology Unit, Laboratory of Hormones and Molecular Genetics/LIM42, Clinical Hospital, Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, SP, Brazil. .,Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, Departamento de Clínica Médica, Disciplina de Endocrinologia e Metabologia, Av. Dr. Enéas de Carvalho Aguiar, 255, 7° andar, sala 7037, São Paulo, CEP: 05403-900, Brazil.
| |
Collapse
|
5
|
Forchhammer K, Lüddecke J. Sensory properties of the PII signalling protein family. FEBS J 2015; 283:425-37. [PMID: 26527104 DOI: 10.1111/febs.13584] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent.
Collapse
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| | - Jan Lüddecke
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| |
Collapse
|
6
|
Bagautdinov B, Matsuura Y, Yamamoto H, Sawano M, Ogasahara K, Takehira M, Kunishima N, Katoh E, Yutani K. Thermodynamic analysis of unusually thermostable CutA1 protein from human brain and its protease susceptibility. J Biochem 2014; 157:169-76. [PMID: 25344844 DOI: 10.1093/jb/mvu062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Unusually stable proteins are a disadvantage for the metabolic turnover of proteins in cells. The CutA1 proteins from Pyrococcus horikoshii and from Oryza sativa (OsCutA1) have unusually high denaturation temperatures (Td) of nearly 150 and 100 °C, respectively, at pH 7.0. It seemed that the CutA1 protein from the human brain (HsCutA1) also has a remarkably high stability. Therefore, the thermodynamic stabilities of HsCutA1 and its protease susceptibility were examined. The Td was remarkably high, being over 95 °C at pH 7.0. The unfolding Gibbs energy (ΔG(0)H2O) was 174 kJ/mol at 37 °C from the denaturant denaturation. The thermodynamic analysis showed that the unfolding enthalpy and entropy values of HsCutA1 were considerably lower than those of OsCutA1 with a similar stability to HsCutA1, which should be related to flexibility of the unstructured properties in both N- and C-terminals of HsCutA1. HsCutA1 was almost completely digested after 1-day incubation at 37 °C by subtilisin, although OsCutA1 was hardly digested at the same conditions. These results indicate that easily available fragmentation of HsCutA1 with remarkably high thermodynamic stability at the body temperature should be important for its protein catabolism in the human cells.
Collapse
Affiliation(s)
- Bagautdin Bagautdinov
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Yoshinori Matsuura
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Hitoshi Yamamoto
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masahide Sawano
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Kyoko Ogasahara
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Michiyo Takehira
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Naoki Kunishima
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Etsuko Katoh
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Katsuhide Yutani
- RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan; Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan; and National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
7
|
Bagautdinov B. The structures of the CutA1 proteins from Thermus thermophilus and Pyrococcus horikoshii: characterization of metal-binding sites and metal-induced assembly. Acta Crystallogr F Struct Biol Commun 2014; 70:404-13. [PMID: 24699729 PMCID: PMC3976053 DOI: 10.1107/s2053230x14003422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/15/2014] [Indexed: 11/10/2022] Open
Abstract
CutA1 (copper tolerance A1) is a widespread cytoplasmic protein found in archaea, bacteria, plants and animals, including humans. In Escherichia coli it is implicated in divalent metal tolerance, while the mammalian CutA1 homologue has been proposed to mediate brain enzyme acetylcholinesterase activity and copper homeostasis. The X-ray structures of CutA1 from the thermophilic bacterium Thermus thermophilus (TtCutA1) with and without bound Na(+) at 1.7 and 1.9 Å resolution, respectively, and from the hyperthermophilic archaeon Pyrococcus horikoshii (PhCutA1) in complex with Na(+) at 1.8 Å resolution have been determined. Both are short and rigid proteins of about 12 kDa that form intertwined compact trimers in the crystal and solution. The main difference in the structures is a wide-type β-bulge on top of the TtCutA1 trimer. It affords a mechanism for lodging a single-residue insertion in the middle of β2 while preserving the interprotomer main-chain hydrogen-bonding network. The liganded forms of the proteins provide new structural information about the metal-binding sites and CutA1 assembly. The Na(+)-TtCutA1 structure unveils a dodecameric assembly with metal ions in the trimer-trimer interfaces and the lateral clefts of the trimer. For Na(+)-PhCutA1, the metal ion associated with six waters in an octahedral geometry. The structures suggest that CutA1 may contribute to regulating intracellular metal homeostasis through various binding modes.
Collapse
Affiliation(s)
- Bagautdin Bagautdinov
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
8
|
Liu R, Hou H, Yi X, Wu S, Zeng H. Divalent cation tolerance protein binds to β-secretase and inhibits the processing of amyloid precursor protein. Neural Regen Res 2013; 8:991-9. [PMID: 25206392 PMCID: PMC4145881 DOI: 10.3969/j.issn.1673-5374.2013.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022] Open
Abstract
The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease. Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and γ-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of Alzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1-interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.
Collapse
Affiliation(s)
- Runzhong Liu
- State Key Laboratory of Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Haibo Hou
- State Key Laboratory of Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Xuelian Yi
- State Key Laboratory of Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Shanwen Wu
- State Key Laboratory of Cellular Stress Biology, Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Huan Zeng
- Xiamen Maternal and Child Health Hospital, Xiamen 361003, Fujian Province, China
| |
Collapse
|
9
|
Kamada T, Kurokawa MS, Kato T, Takenouchi K, Takahashi K, Yoshioka T, Uchida T, Mitsui H, Suematsu N, Okamoto K, Yudo K, Katayama Y, Nakamura H. Proteomic analysis of bone marrow-adherent cells in rheumatoid arthritis and osteoarthritis. Int J Rheum Dis 2012; 15:169-78. [DOI: 10.1111/j.1756-185x.2012.01702.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kazuo Yudo
- Department of Frontier Medicine; Institute of Medical Science; St. Marianna University Graduate School of Medicine; Kawasaki
| | - Yasuo Katayama
- Department of Frontier Medicine; Institute of Medical Science; St. Marianna University Graduate School of Medicine; Kawasaki
| | | |
Collapse
|
10
|
Morrison C, Mancini S, Cipollone J, Kappelhoff R, Roskelley C, Overall C. Microarray and proteomic analysis of breast cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis. J Biol Chem 2011; 286:34271-85. [PMID: 21784845 PMCID: PMC3190775 DOI: 10.1074/jbc.m111.222513] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/20/2011] [Indexed: 12/20/2022] Open
Abstract
Dynamic reciprocal interactions between a tumor and its microenvironment impact both the establishment and progression of metastases. These interactions are mediated, in part, through proteolytic sculpting of the microenvironment, particularly by the matrix metalloproteinases, with both tumors and stroma contributing to the proteolytic milieu. Because bone is one of the predominant sites of breast cancer metastases, we used a co-culture system in which a subpopulation of the highly invasive human breast cancer cell line MDA-MB-231, with increased propensity to metastasize to bone, was overlaid onto a monolayer of differentiated osteoblast MC3T3-E1 cells in a mineralized osteoid matrix. CLIP-CHIP® microarrays identified changes in the complete protease and inhibitor expression profile of the breast cancer and osteoblast cells that were induced upon co-culture. A large increase in osteoblast-derived MMP-13 mRNA and protein was observed. Affymetrix analysis and validation showed induction of MMP-13 was initiated by soluble factors produced by the breast tumor cells, including oncostatin M and the acute response apolipoprotein SAA3. Significant changes in the osteoblast secretomes upon addition of MMP-13 were identified by degradomics from which six novel MMP-13 substrates with the potential to functionally impact breast cancer metastasis to bone were identified and validated. These included inactivation of the chemokines CCL2 and CCL7, activation of platelet-derived growth factor-C, and cleavage of SAA3, osteoprotegerin, CutA, and antithrombin III. Hence, the influence of breast cancer metastases on the bone microenvironment that is executed via the induction of osteoblast MMP-13 with the potential to enhance metastases growth by generating a microenvironmental amplifying feedback loop is revealed.
Collapse
Affiliation(s)
- Charlotte Morrison
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
| | - Stephanie Mancini
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jane Cipollone
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Reinhild Kappelhoff
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
| | - Calvin Roskelley
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher Overall
- From the Centre for Blood Research and
- Departments of Oral Biological and Medical Sciences
- Biochemistry and Molecular Biology, and
| |
Collapse
|
11
|
Hicks D, John D, Makova NZ, Henderson Z, Nalivaeva NN, Turner AJ. Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. J Neurochem 2011; 116:742-6. [PMID: 21214569 DOI: 10.1111/j.1471-4159.2010.07032.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The early stages of Alzheimer's disease are characterized by cholinergic deficits and the preservation of cholinergic function through the use of acetylcholinesterase inhibitors is the basis for current treatments of the disease. Understanding the causes for the loss of basal forebrain cholinergic neurons in neurodegeneration is therefore a key to developing new therapeutics. In this study, we review novel aspects of cholinesterase membrane localization in brain and propose mechanisms for its lipid domain targeting, secretion and protein-protein interactions. In erythrocytes, acetylcholinesterase (AChE) is localized to lipid rafts through a GPI anchor. However, the main splice form of AChE in brain lacks a transmembrane peptide anchor region and is bound to the 'proline-rich membrane anchor', PRiMA, in lipid rafts. Furthermore, AChE is secreted ('shed') from membranes and this shedding is stimulated by cholinergic agonists. Immunocytochemical studies on rat brain have shown that membrane-associated PRiMA immunofluorescence is located selectively at cholinergic neurons of the basal forebrain and striatum. A strong association of AChE with the membrane via PRiMA seems therefore to be a specific requirement of forebrain cholinergic neurons. α7 nicotinic acetylcholine receptors are also associated with lipid rafts where they undergo rapid internalisation on stimulation. We are currently probing the mechanism(s) of AChE shedding, and whether this process and its apparent association with α7 nicotinic acetylcholine receptors and metabolism of the Alzheimer's amyloid precursor protein is determined by its association with lipid raft domains either in normal or pathological situations.
Collapse
Affiliation(s)
- David Hicks
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
12
|
Henderson Z, Matto N, John D, Nalivaeva NN, Turner AJ. Co-localization of PRiMA with acetylcholinesterase in cholinergic neurons of rat brain: an immunocytochemical study. Brain Res 2010; 1344:34-42. [PMID: 20471375 DOI: 10.1016/j.brainres.2010.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 12/12/2022]
Abstract
In the central nervous system, acetylcholinesterase (AChE) is present in a tetrameric form that is anchored to membranes via a proline-rich membrane anchor (PRiMA). Previously it has been found that principal cholinergic neurons in the brain express high concentrations of AChE enzymic activity at their neuronal membranes. The aim of this study was to use immunocytochemical methods to determine the distribution of PRiMA in these neurons in the rat brain. Confocal laser and electron microscopic investigations showed that PRiMA immunoreactivity is associated with the membranes of the somata, dendrites and axons of cholinergic neurons in the basal forebrain, striatum and pedunculopontine nuclei, i.e. the neurons that innervate forebrain and brainstem structures. In these neurones, PRiMA also co-localizes with AChE immunoreactivity at the plasma membrane. PRiMA label was absent from neighboring GABAergic neurons, and from other neurons of the brain known to express high levels of AChE enzymic activity including cranial nerve motor neurons and dopaminergic neurons of the substantia nigra zona compacta. A strong association of AChE with PRiMA at the plasma membrane is therefore a feature specific to principal cholinergic neurons that innervate the central nervous system.
Collapse
Affiliation(s)
- Zaineb Henderson
- Faculty of Biological Sciences, Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
13
|
Liang D, Carvalho S, Bon S, Massoulié J. Unusual transfer of CutA into the secretory pathway, evidenced by fusion proteins with acetylcholinesterase. FEBS J 2009; 276:4473-82. [PMID: 19645739 DOI: 10.1111/j.1742-4658.2009.07154.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mouse CutA protein exists as long and short components of 20 and 15 kDa, produced by the use of different in-frame ATGs initiation codons, and by proteolytic cleavage. We recently showed that, surprisingly, the longer, uncleaved component resides mostly in the secretory pathway and is secreted, whereas the shorter component resides mostly in the cytoplasm. To confirm these subcellular localizations, we constructed fusion proteins in which the catalytic domain of rat acetylcholinesterase was placed downstream of the CutA variants. The acquisition of an active conformation and N-glycosylation of the fusion proteins proved their transfer into the secretory pathway. We show that the CutA-AChE fusion proteins produced and secreted active, N-glycosylated molecules, while an AChE mutant lacking its secretory signal peptide did not produce any significant activity. Thus, an N-terminal CutA domain actually drives AChE into the endoplasmic reticulum and allows its secretion. This was observed with full length CutA, starting at Met1, and at a much lower level with the shorter mutants starting at Met24 and Met44, although the latter is not predicted to possess any signal peptide. These experiments illustrate the value of using AChE as a reporter and reveals an unusual protein trafficking and secretory process.
Collapse
Affiliation(s)
- Dong Liang
- Laboratoire de Neurobiologie, CNRS UMR 8544, Paris, France
| | | | | | | |
Collapse
|
14
|
Sant'Anna FH, Trentini DB, de Souto Weber S, Cecagno R, da Silva SC, Schrank IS. The PII superfamily revised: a novel group and evolutionary insights. J Mol Evol 2009; 68:322-36. [PMID: 19296042 DOI: 10.1007/s00239-009-9209-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/16/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
The PII proteins compose a superfamily of signal transducers with fundamental roles in the nitrogen metabolism of prokaryotic organisms. They act at different cellular targets, such as ammonia transporters, enzymes, and transcriptional factors. These proteins are small, highly conserved, and well distributed among prokaryotes. The current PII classification is based on sequence similarity and genetic linkage. Our work reviewed this classification through an extensive analysis of PII homologues deposited in GenBank. We also investigated evolutionary aspects of this ancient protein superfamily and revised its PROSITE signatures. A new group of PII proteins is described in this work. These PII homologues have a peculiar genetic context, as they are associated with metal transporters and do not contain the canonical PROSITE signatures of PII. Our analysis reveals that horizontal gene transfer could have played an important role in PII evolution. Thus, new insights into PII evolution, a new PII group, and more comprehensive PROSITE signatures are proposed.
Collapse
|
15
|
Liang D, Nunes-Tavares N, Xie HQ, Carvalho S, Bon S, Massoulié J. Protein CutA undergoes an unusual transfer into the secretory pathway and affects the folding, oligomerization, and secretion of acetylcholinesterase. J Biol Chem 2008; 284:5195-207. [PMID: 19049969 DOI: 10.1074/jbc.m806260200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian protein CutA was first discovered in a search for the membrane anchor of mammalian brain acetylcholinesterase (AChE). It was co-purified with AChE, but it is distinct from the real transmembrane anchor protein, PRiMA. CutA is a ubiquitous trimeric protein, homologous to the bacterial CutA1 protein that belongs to an operon involved in resistance to divalent ions ("copper tolerance A"). The function of this protein in plants and animals is unknown, and several hypotheses concerning its subcellular localization have been proposed. We analyzed the expression and the subcellular localization of mouse CutA variants, starting at three in-frame ATG codons, in transfected COS cells. We show that CutA produces 20-kDa (H) and 15-kDa (L) components. The H component is transferred into the secretory pathway and secreted, without cleavage of a signal peptide, whereas the L component is mostly cytosolic. We show that expression of the longer CutA variant reduces the level of AChE, that this effect depends on the AChE C-terminal peptides, and probably results from misfolding. Surprisingly, CutA increased the secretion of a mutant possessing a KDEL motif at its C terminus; it also increased the formation of AChE homotetramers. We found no evidence for a direct interaction between CutA and AChE. The longer CutA variant seems to affect the processing and trafficking of secretory proteins, whereas the shorter one may have a distinct function in the cytoplasm.
Collapse
Affiliation(s)
- Dong Liang
- Laboratoire de Neurobiologie, CNRS UMR 8544, Ecole Normale Supérieure, 46 Rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Bagautdinov B, Matsuura Y, Bagautdinova S, Kunishima N, Yutani K. Structure of putative CutA1 from Homo sapiens determined at 2.05 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:351-7. [PMID: 18453701 PMCID: PMC2376402 DOI: 10.1107/s1744309108009846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 04/10/2008] [Indexed: 11/10/2022]
Abstract
The structure of human brain CutA1 (HsCutA1) has been determined using diffraction data to 2.05 A resolution. HsCutA1 has been implicated in the anchoring of acetylcholinesterase in neuronal cell membranes, while its bacterial homologue Escherichia coli CutA1 is involved in copper tolerance. Additionally, the structure of HsCutA1 bears similarity to that of the signal transduction protein PII, which is involved in regulation of nitrogen metabolism. Although several crystal structures of CutA1 from various sources with different rotation angles and degrees of interaction between trimer interfaces have been reported, the specific functional role of CutA1 is still unclear. In this study, the X-ray structure of HsCutA1 was determined in space group P2(1)2(1)2(1), with unit-cell parameters a = 68.69, b = 88.84, c = 125.33 A and six molecules per asymmetric unit. HsCutA1 is a trimeric molecule with intertwined antiparallel beta-strands; each subunit has a molecular weight of 14.6 kDa and contains 135 amino-acid residues. In order to obtain clues to the possible function of HsCutA1, its crystal structure was compared with those of other CutA1 and PII proteins.
Collapse
Affiliation(s)
- Bagautdin Bagautdinov
- Protein Structure Analysis Team, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.
| | | | | | | | | |
Collapse
|
17
|
Badiou A, Brunet JL, Belzunces LP. Existence of two membrane-bound acetylcholinesterases in the honey bee head. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:122-134. [PMID: 17966129 DOI: 10.1002/arch.20204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two acetylcholinesterase (EC 3.1.1.7) membrane forms AChE(m1) and AChE(m2), have been characterised in the honey bee head. They can be differentiated by their ionic properties: AChE(m1) is eluted at 220 mM NaCl whereas AChE(m2) is eluted at 350 mM NaCl in anion exchange chromatography. They also present different thermal stabilities. Previous processing such as sedimentation, phase separation, and extraction procedures do not affect the presence of the two forms. Unlike AChE(m1), AChE(m2) presents reversible chromatographic elution properties, with a shift between 350 to 220 mM NaCl, depending on detergent conditions. Purification by affinity chromatography does not abolish the shift of the AChE(m2) elution. The similar chromatographic behaviour of soluble AChE strongly suggests that the occurrence of the two membrane forms is not due to the membrane anchor. The two forms have similar sensitivities to eserine and BW284C51. They exhibit similar electrophoretic mobilities and present molecular masses of 66 kDa in SDS-PAGE and a sensitivity to phosphatidylinositol-specific phospholipase C in non-denaturing conditions, thus revealing the presence of a glycosyl-phosphatidylinositol anchor. We assume that bee AChE occurs in two distinct conformational states whose AChE(m2) apparent state is reversibly modulated by the Triton X-100 detergent into AChE(m1).
Collapse
Affiliation(s)
- Alexandra Badiou
- INRA, Laboratoire de Toxicologie Environnementale, UMR INRA-UAPV 406 Ecologie des Invertébrés, Avignon, France.
| | | | | |
Collapse
|
18
|
Characterization of the human CUTA isoform2 present in the stably transfected HeLa cells. Mol Biol Rep 2007; 36:63-9. [DOI: 10.1007/s11033-007-9152-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/25/2007] [Indexed: 01/18/2023]
|
19
|
Arnesano F, Banci L, Benvenuti M, Bertini I, Calderone V, Mangani S, Viezzoli MS. The evolutionarily conserved trimeric structure of CutA1 proteins suggests a role in signal transduction. J Biol Chem 2003; 278:45999-6006. [PMID: 12949080 DOI: 10.1074/jbc.m304398200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CutA1 are a protein family present in bacteria, plants, and animals, including humans. Escherichia coli CutA1 is involved in copper tolerance, whereas mammalian proteins are implicated in the anchoring of acetylcholinesterase in neuronal cell membranes. The x-ray structures of CutA1 from E. coli and rat were determined. Both proteins are trimeric in the crystals and in solution through an inter-subunit beta-sheet formation. Each subunit consists of a ferredoxin-like (beta1alpha1beta2beta3alpha2beta4) fold with an additional strand (beta5), a C-terminal helix (alpha3), and an unusual extended beta-hairpin involving strands beta2 and beta3. The bacterial CutA1 is able to bind copper(II) in vitro through His2Cys coordination in a type II water-accessible site, whereas the rat protein precipitates in the presence of copper(II). The evolutionarily conserved trimeric assembly of CutA1 is reminiscent of the architecture of PII signal transduction proteins. This similarity suggests an intriguing role of CutA1 proteins in signal transduction through allosteric communications between subunits.
Collapse
Affiliation(s)
- Fabio Arnesano
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Burkhead JL, Abdel-Ghany SE, Morrill JM, Pilon-Smits EAH, Pilon M. The Arabidopsis thaliana CUTA gene encodes an evolutionarily conserved copper binding chloroplast protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:856-867. [PMID: 12795705 DOI: 10.1046/j.1365-313x.2003.01769.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Arabidopsis thaliana CUTA gene encodes a 182-amino-acid-long putative precursor of a chloroplast protein with high sequence similarity to evolutionarily conserved prokaryotic proteins implicated in copper tolerance. Northern analysis indicates that AtCUTA mRNA is expressed in all major tissue types. Analysis of cDNA clones and RT-PCR with total mRNA revealed alternative splicing of AtCUTA by retention of an intron. The intron-containing mRNA encodes a truncated 156-amino-acid protein as a result of stop codons in the included intron. The sequence of AtCutAp encoded by the fully spliced transcript suggests that the precursor consists of three domains: an N-terminal chloroplast transit sequence of 70 residues, followed by a domain with prokaryotic signal-sequence-like characteristics and finally the most conserved C-terminal domain. The N-terminal chloroplast transit sequence was functional to route a passenger protein into isolated pea chloroplasts with possible sorting to the envelope. Chloroplast localization was confirmed by Western blot analysis of isolated and fractionated chloroplasts. Recombinant AtCutA protein was expressed in Escherichia coli without the N-terminal 70-amino-acid chloroplast transit sequence. This recombinant AtCutAp was routed to the bacterial periplasm of E. coli. Purified recombinant AtCutAp is tetrameric and selectively binds Cu(II) ions with an affinity comparable to that reported for mammalian prion proteins.
Collapse
Affiliation(s)
- Jason L Burkhead
- Biology Department, Colorado State University, Room E 416, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
21
|
Ruiz-Espejo F, Cabezas-Herrera J, Illana J, Campoy FJ, Vidal CJ. Cholinesterase activity and acetylcholinesterase glycosylation are altered in human breast cancer. Breast Cancer Res Treat 2002; 72:11-22. [PMID: 12000217 DOI: 10.1023/a:1014904701723] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Increasing evidence supports the involvement of cholinesterases in tumorigenesis. Several tumour cells show ChE activity, while the acetyl- (AChE) and butyrylcholinesterase (BuChE) genes are amplified in leukemias, ovarian carcinoma and other cancers. ChE activity was measured in 31 samples of tumoral breast (TB) and 20 of normal breast (NB). Despite the wide variations observed, BuChE predominated over AChE both in TB and NB. The mean AChE activity in NB was 1.61 nmol of the substrate hydrolysed per minute and per miligram protein (mU/mg), which rose to 3.09 mU/mg in TB (p = 0.041). The BuChE activity dropped from 5.24 mU/mg in NB to 3.39 mU/mg in TB (p = 0.002). Glycolipid-linked AChE dimers and monomers and hydrophilic BuChE tetramers and monomers were identified in NB and TB, and their proportions were unmodified by the neoplasia. The amount of AChE forms reacting with wheat germ agglutinin (WGA) decreased in TB while that of BuChE species was unaffected, demonstrating that the glycosylation of AChE was altered in TB. The binding of AChE and BuChE with antibodies was unaffected by the neoplasia. The difference in lectin reactivity between erythrocyte and breast AChE, the lack of AChE in blood plasma, and the finding of monomeric BuChE in breast but not in plasma suggest that breast epithelial cells produce AChE for membrane attachment and hydrophilic BuChE for secretion. Several reasons are provided to explain the altered expression of ChEs in breast cancer.
Collapse
Affiliation(s)
- Francisco Ruiz-Espejo
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Spain
| | | | | | | | | |
Collapse
|
22
|
Abstract
As a tetramer, acetylcholinesterase (AChE) is anchored to the basal lamina of the neuromuscular junction and to the membrane of neuronal synapses. We have previously shown that collagen Q (ColQ) anchors AChE at the neuromuscular junction. We have now cloned the gene PRiMA (proline-rich membrane anchor) encoding the AChE anchor in mammalian brain. We show that PRiMA is able to organize AChE into tetramers and to anchor them at the surface of transfected cells. Furthermore, we demonstrate that AChE is actually anchored in neural cell membranes through its interaction with PRiMA. Finally, we propose that only PRiMA anchors AChE in mammalian brain and muscle cell membranes.
Collapse
Affiliation(s)
- Anselme L Perrier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | |
Collapse
|
23
|
García-Ayllón MS, Sáez-Valero J, Muñoz-Delgado E, Vidal CJ. Identification of hybrid cholinesterase forms consisting of acetyl- and butyrylcholinesterase subunits in human glioma. Neuroscience 2002; 107:199-208. [PMID: 11731094 DOI: 10.1016/s0306-4522(01)00355-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain and non-brain tumors contain acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) transcripts and enzyme activity. AChE and BuChE occur in tissues as a set of molecular components, whose distribution in a cyst fluid from a human astrocytoma we investigated. The fluid displayed high BuChE and low AChE activities. Three types of cholinesterase (ChE) tetramers were identified in the fluid by means of sedimentation analyses and assays with specific inhibitors, and their sedimentation coefficients were 11.7S (ChE-I), 11.1S (ChE-II), and 10.5S (ChE-III). ChE-I was unretained, ChE-II was weakly retained and ChE-III was adsorbed to edrophonium-agarose, confirming the AChE nature of the latter. ChE-I and ChE-II tetramers contained BuChE subunits as shown by their binding with an antiserum against BuChE. The ChE activity of the immunocomplexes made with ChE-II and anti-BuChE antibodies decreased with the AChE inhibitor BW284c51, revealing that ChE-II was made of AChE and BuChE subunits, in contrast to ChE-I, which only contained BuChE subunits. The binding of an anti-AChE antibody (AE1) to ChE-II and ChE-III, but not to ChE-I, demonstrated the hybrid composition of ChE-II. A substantial fraction of the AChE tetramers and dimers of astrocytomas and oligodendrogliomas bound both to anti-AChE and anti-BuChE antibodies, which revealed a mixed composition of AChE and BuChE subunits in them. The AChE components of brain, meningiomas and neurinomas were only recognized by AE1. In conclusion, our results demonstrate that aberrant ChE oligomers consisting of AChE and BuChE subunits are generated in astrocytomatous cyst and gliomas but not in brain, meningiomas or neurinomas.
Collapse
Affiliation(s)
- M S García-Ayllón
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30071 Espinardo, Murcia, Spain
| | | | | | | |
Collapse
|
24
|
Sharma KV, Koenigsberger C, Brimijoin S, Bigbee JW. Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth. J Neurosci Res 2001; 63:165-75. [PMID: 11169626 DOI: 10.1002/1097-4547(20010115)63:2<165::aid-jnr1008>3.0.co;2-o] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acetylcholinesterase (AChE) can promote neurite outgrowth through a mechanism that is independent of its role in hydrolyzing the neurotransmitter acetylcholine. It has been proposed that this neuritogenic capacity of AChE may result from its intrinsic capacity to function in adhesion. In this study we directly tested this hypothesis using neuroblastoma cell lines that have been engineered for altered cell-surface expression of AChE. Using a microtiter-plate adhesion assay and the electrical cell-substrate impedance-sensing (ECIS) method, we demonstrate that the level of cell-substratum adhesion of these cells directly correlates with their level of AChE expression. Furthermore, this adhesion is blocked by either an anti-AChE antibody or a highly specific AChE inhibitor (BW284c51), both of which have also been shown to block neurite outgrowth. In addition, cells that overexpress AChE showed enhanced neurite initiation. By employing cell lines with different levels of AChE expression in two types of cell-substratum adhesion assays, our current studies provide evidence for an adhesive function for AChE. These results, together with the fact that AChE shares sequence homology and structural similarities with several known cell adhesion molecules, support the hypothesis that AChE promotes neurite outgrowth, at least in part, through an adhesive function.
Collapse
Affiliation(s)
- K V Sharma
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA 23298-0709, USA
| | | | | | | |
Collapse
|
25
|
Perrier AL, Cousin X, Boschetti N, Haas R, Chatel JM, Bon S, Roberts WL, Pickett SR, Massoulié J, Rosenberry TL, Krejci E. Two distinct proteins are associated with tetrameric acetylcholinesterase on the cell surface. J Biol Chem 2000; 275:34260-5. [PMID: 10954708 DOI: 10.1074/jbc.m004289200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian brain, acetylcholinesterase (AChE) exists mostly as a tetramer of 70-kDa catalytic subunits that are linked through disulfide bonds to a hydrophobic subunit P of approximately 20 kDa. To characterize P, we reduced the disulfide bonds in purified bovine brain AChE and sequenced tryptic fragments from bands in the 20-kDa region. We obtained sequences belonging to at least two distinct proteins: the P protein and another protein that was not disulfide-linked to catalytic subunits. Both proteins were recognized in Western blots by antisera raised against specific peptides. We cloned cDNA encoding the second protein in a cDNA library from bovine substantia nigra and obtained rat and human homologs. We call this protein mCutA because of its homology to a bacterial protein (CutA). We could not demonstrate a direct interaction between mCutA and AChE in vitro in transfected cells. However, in a mouse neuroblastoma cell line that produced membrane-bound AChE as an amphiphilic tetramer, the expression of mCutA antisense mRNA eliminated cell surface AChE and decreased the level of amphiphilic tetramer in cell extracts. mCutA therefore appears necessary for the localization of AChE at the cell surface; it may be part of a multicomponent complex that anchors AChE in membranes, together with the hydrophobic P protein.
Collapse
Affiliation(s)
- A L Perrier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|