1
|
Jung HY, Kwon HJ, Kim W, Nam SM, Kim JW, Hahn KR, Yoo DY, Yoon YS, Choi SY, Kim DW, Hwang IK. Role of pyridoxine in GABA synthesis and degradation in the hippocampus. Tissue Cell 2019; 61:72-78. [PMID: 31759410 DOI: 10.1016/j.tice.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 10/26/2022]
Abstract
Pyridoxal-5'-phosphate, the active form of vitamin B6, is associated with activities of several enzymes and the treatment of various neurological disorders. Here, we investigated the effects of pyridoxine on the immunoreactivity and protein levels of γ-aminobutyric acid (GABA)-synthesizing and degradation enzymes such as glutamic acid decarboxylase (GAD), GABA transaminase (GABA-T), and succinic semialdehyde dehydrogenase (SSADH), in the hippocampus of mice. The mice intraperitonially received physiological saline and 350 mg/kg pyridoxine, twice a day for 21 days, and were euthanized 2 h after the final dose. In the vehicle-treated group, we observed GAD67 immunoreactivity in the stratum pyramidale of the CA1 and CA3 region, Schaffer collateral, polymorphic layer, and outer granule cell layer of the dentate gyrus. Pyridoxine administration significantly increased GAD67 immunoreactivity, while significantly decreasing GABA-T immunoreactivity in pyridoxine-treated mouse hippocampi (CA1 region and dentate gyrus). In the stratum lacunosum-moleculare of CA1 region, GABA-T immunoreactivity was significantly increased in the pyridoxine-treated group compared to that in the vehicle-treated group, although GAD67 immunoreactivity was similarly observed in these groups. Alternatively, there were no significant differences in SSADH immunoreactivity in any regions of the hippocampus between the vehicle- and pyridoxine-treated groups. Western blot analysis showed significant increases in GAD67 and GABA-T protein levels in the pyridoxine-treated group compared with those in the vehicle-treated group. Therefore, pyridoxine administration facilitates GABA turnover in mouse hippocampus by modulating the GABA-synthesizing and degradation enzymes.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Woosuk Kim
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05030, South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, South Korea.
| | - In Koo Hwang
- Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
2
|
Karaś M, Jakubczyk A, Szymanowska U, Złotek U, Zielińska E. Digestion and bioavailability of bioactive phytochemicals. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13323] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Monika Karaś
- Department of Biochemistry and Food Chemistry; University of Life Sciences; Skromna Str. 8 Lublin 20-704 Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry; University of Life Sciences; Skromna Str. 8 Lublin 20-704 Poland
| | - Urszula Szymanowska
- Department of Biochemistry and Food Chemistry; University of Life Sciences; Skromna Str. 8 Lublin 20-704 Poland
| | - Urszula Złotek
- Department of Biochemistry and Food Chemistry; University of Life Sciences; Skromna Str. 8 Lublin 20-704 Poland
| | - Ewelina Zielińska
- Department of Biochemistry and Food Chemistry; University of Life Sciences; Skromna Str. 8 Lublin 20-704 Poland
| |
Collapse
|
4
|
Seo JY, Lee CH, Cho JH, Choi JH, Yoo KY, Kim DW, Park OK, Li H, Choi SY, Hwang IK, Won MH. Neuroprotection of ebselen against ischemia/reperfusion injury involves GABA shunt enzymes. J Neurol Sci 2009; 285:88-94. [DOI: 10.1016/j.jns.2009.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
|
6
|
Kang JH, Park YB, Huh TL, Lee WH, Choi MS, Kwon OS. High-level expression and characterization of the recombinant enzyme, and tissue distribution of human succinic semialdehyde dehydrogenase. Protein Expr Purif 2005; 44:16-22. [PMID: 16199352 DOI: 10.1016/j.pep.2005.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 03/18/2005] [Accepted: 03/19/2005] [Indexed: 10/25/2022]
Abstract
The succinic semialdehyde dehydrogenase gene (SSADH; EC 1.2.1.24) from human brain was cloned and overexpressed in Escherichia coli. Based on SDS-PAGE, the apparent molecular mass of subunit was 54 kDa, in good agreement with the theoretical size. The purified SSADH appears to be a tetramer of identical subunits. The specific activity of the recombinant protein was 1.82 micromol NADH formedmin(-1)mg(-1) and the optimal pH was found to be 8.5. The Michaelis constants K(m) for succinic semialdehyde and NAD(+) were 6.3 and 125 microM, respectively. Initial velocity studies show NADH to be a competitive inhibitor with respect to NAD(+), but to be non-competitive inhibitor with respect to succinic semialdehyde. The overexpression of SSADH in E. coli and one-step purification of the highly active SSADH will facilitate further biochemical studies on this enzyme. In addition, an mRNA master dot-blot for multiple human tissues provided a complete map of the tissue distribution for SSADH. The major sites of SSADH expression are liver, skeletal muscle, kidney, and brain. The data indicate that mRNA expression of SSADH is ubiquitous, but highly regulated at the level of transcription in a tissue-specific manner.
Collapse
Affiliation(s)
- Jeong Han Kang
- Department of Biochemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Lee BR, Kim DW, Hong JW, Eum WS, Choi HS, Choi SH, Kim SY, An JJ, Ahn JY, Kwon OS, Kang TC, Won MH, Cho SW, Lee KS, Park J, Choi SY. Brain succinic semialdehyde dehydrogenase. Reactions of sulfhydryl residues connected with catalytic activity. ACTA ACUST UNITED AC 2004; 271:4903-8. [PMID: 15606778 DOI: 10.1111/j.1432-1033.2004.04459.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incubation of an NAD+-dependent succinic semialdehyde dehydrogenase from bovine brain with 4-dimethylaminoazobenzene-4-iodoacetamide (DABIA) resulted in a time-dependent loss of enzymatic activity. This inactivation followed pseudo first-order kinetics with a second-order rate constant of 168 m(-1).min(-1). The spectrum of DABIA-labeled enzyme showed a characteristic peak of the DABIA alkylated sulfhydryl group chromophore at 436 nm, which was absent from the spectrum of the native enzyme. A linear relationship was observed between DABIA binding and the loss of enzyme activity, which extrapolates to a stoichiometry of 8.0 mol DABIA derivatives per mol enzyme tetramer. This inactivation was prevented by preincubating the enzyme with substrate, succinic semialdehyde, but not by preincubating with coenzyme NAD+. After tryptic digestion of the enzyme modified with DABIA, two peptides absorbing at 436 nm were isolated by reverse-phase HPLC. The amino acid sequences of the DABIA-labeled peptides were VCSNQFLVQR and EVGEAICTDPLVSK, respectively. These sites are identical to the putative active site sequences of other brain succinic semialdehyde dehydrogenases. These results suggest that the catalytic function of succinic semialdehyde dehydrogenase is inhibited by the specific binding of DABIA to a cysteine residue at or near its active site.
Collapse
Affiliation(s)
- Byung Ryong Lee
- Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kang TC, Park SK, Hwang IK, An SJ, Choi SY, Kwon OS, Baek NI, Lee HY, Won MH. The altered expression of GABA shunt enzymes in the gerbil hippocampus before and after seizure generation. Neurochem Int 2003; 42:239-49. [PMID: 12427478 DOI: 10.1016/s0197-0186(02)00079-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, the distribution of succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) in the hippocampus of the Mongolian gerbil and its association with various sequelae of spontaneous seizure were investigated in order to identify the roles of GABA shunt in the epileptogenesis and the recovery mechanisms in these animals. Both SSADH and SSAR immunoreactivities in the GABAergic neurons were significantly higher in the pre-seizure groups of seizure sensitive (SS) gerbil as compared to those seen in the seizure resistant (SR) gerbils. The distributions of both SSADH and SSAR immunoreactivities in the hippocampus showed significant differences after the on-set of seizure. At 3 h postictal, when compared to the pre-seizure group of SS gerbils, a decline in the immunoreactivities in the perikarya was observed. At 12 h after seizure on-set, the densities of both SSADH and SSAR immunoreactivities were begun to recover to the pre-seizure level of SS gerbils. These results suggest that the GABAergic neurons in the hippocampal complex of the SS gerbil may be highly activated. In addition, the imbalance of GABA shunt expressions in the GABAergic neurons may imply a malfunction of the metabolism of GABAergic neurons in the SS gerbils, and this defect may trigger seizure on-set. Therefore, the initiation of seizure, at least in gerbils, may be the result of a malfunction in GABA shunt in the GABAergic neurons.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, Kangwon-Do, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kang TC, Park SK, Hwang IK, An SJ, Choi SY, Cho SW, Won MH. Spatial and temporal alterations in the GABA shunt in the gerbil hippocampus following transient ischemia. Brain Res 2002; 944:10-8. [PMID: 12106661 DOI: 10.1016/s0006-8993(02)02596-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we have identified the alteration in the expressions of GABA shunt-associated enzymes and the GABA transporter in order to determine the relationship between the neuronal damage and GABA metabolism following ischemia. At 30 min post-ischemia, the immunoreactivities of the glutamic acid decarboxylase (GAD) isoforms were markedly elevated in the CA1 region, as compared with the sham operated group. At 3-12 h post-ischemia, their immunoreactivities recovered at the sham level. These patterns were similarly observed up to 12 h following ischemia insult. However, the intensity of GAD67 was markedly increased at 24 h post-ischemic insult. The temporal changes in GABA transporter 1 (GAT-1) expressions were similar to that of GAD67, but not GAD65, expression, at least prior to 12 h after ischemic insults. GAT-1 immunoreactivity was significantly elevated in the CA1 region posterior to 12 h post-ischemia. Both succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) immunoreactivities were not altered in GABAergic neurons following ischemia. In contrast, in pyramidal cells, both SSADH and SSAR immunoreactivities showed chronological alterations in the CA1 region. Thus, our findings suggest that the differential alterations of GABA metabolism may be one of the important factors in neuronal damages induced by ischemia.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy, College of Life Science, Hallym University, Chunchon, South Korea
| | | | | | | | | | | | | |
Collapse
|