1
|
Raba M, Palgi J, Lehtivaara M, Arumäe U. Microarray Analysis Reveals Increased Transcriptional Repression and Reduced Metabolic Activity but Not Major Changes in the Core Apoptotic Machinery during Maturation of Sympathetic Neurons. Front Cell Neurosci 2016; 10:66. [PMID: 27013977 PMCID: PMC4792887 DOI: 10.3389/fncel.2016.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/01/2016] [Indexed: 01/19/2023] Open
Abstract
Postnatal maturation of the neurons whose main phenotype and basic synaptic contacts are already established includes neuronal growth, refinement of synaptic contacts, final steps of differentiation, programmed cell death period (PCD) etc. In the sympathetic neurons, postnatal maturation includes permanent end of the PCD that occurs with the same time schedule in vivo and in vitro suggesting that the process could be genetically determined. Also many other changes in the neuronal maturation could be permanent and thus based on stable changes in the genome expression. However, postnatal maturation of the neurons is poorly studied. Here we compared the gene expression profiles of immature and mature sympathetic neurons using Affymetrix microarray assay. We found 1310 significantly up-regulated and 1151 significantly down-regulated genes in the mature neurons. Gene ontology analysis reveals up-regulation of genes related to neuronal differentiation, chromatin and epigenetic changes, extracellular factors and their receptors, and cell adhesion, whereas many down-regulated genes were related to metabolic and biosynthetic processes. We show that termination of PCD is not related to major changes in the expression of classical genes for apoptosis or cell survival. Our dataset is deposited to the ArrayExpress database and is a valuable source to select candidate genes in the studies of neuronal maturation. As an example, we studied the changes in the expression of selected genes Igf2bp3, Coro1A, Zfp57, Dcx, and Apaf1 in the young and mature sympathetic ganglia by quantitative PCR and show that these were strongly downregulated in the mature ganglia.
Collapse
Affiliation(s)
- Mikk Raba
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Jaan Palgi
- Department of Gene Technology, Tallinn University of Technology Tallinn, Estonia
| | - Maria Lehtivaara
- Biomedicum Functional Genomics Unit, Biomedicum Helsinki, University of Helsinki Helsinki, Finland
| | - Urmas Arumäe
- Department of Gene Technology, Tallinn University of TechnologyTallinn, Estonia; Institute of Biotechnology, University of HelsinkiHelsinki, Finland
| |
Collapse
|
2
|
Nassar NN, Al-Shorbagy MY, Arab HH, Abdallah DM. Saxagliptin: a novel antiparkinsonian approach. Neuropharmacology 2015; 89:308-17. [PMID: 25446674 DOI: 10.1016/j.neuropharm.2014.10.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/03/2014] [Accepted: 10/06/2014] [Indexed: 01/08/2023]
Abstract
The emergence of glucagon-like peptide-1 as a crucial contender in modifying neurodegenerative diseases in the preclinical studies has instigated interest in investigating the antiparkinsonian effect of dipeptidyl peptidase (DPP)-4 inhibition. Notably, saxagliptin (SAX), the DPP-4 inhibitor, recently showed efficacy in ameliorating streptozotocin-induced Alzheimer's disease; however, its effect on Parkinson's disease (PD) has not yet been elucidated. In a rat rotenone (ROT) model, SAX prominently improved motor performance as well as muscle coordination and corrected akinesia. Moreover, SAX preserved substantia nigra pars compacta tyrosine hydroxylase (TH) immunoreactivity while halting the reduction in the striatal TH, dopamine (DA) and complex I. Meanwhile, SAX prevented the ROT-induced increment of striatal DPP-4 and the decline in cAMP, ATP/ADP and brain-derived neurotropic factor levels. Improvement in striatal energy level was associated with partial hindrance of ROT-induced body weight reduction. In addition, through its anti-inflammatory potential, SAX decreased the ROT-induced nuclear factor-κΒ, inducible nitric oxide synthase, tumor necrosis factor-α, intracellular adhesion molecule-1 and myeloperoxidase. The antiapoptotic marker B-cell lymphoma-2 was enhanced by SAX, versus reduction in caspase-3 and its intrinsic apoptotic activator cytochrome C. Furthermore, SAX amended alterations induced by ROT in the thiobarbituric acid reactive substances and the transcriptional factor Nrf-2 level. In conclusion, SAX can be introduced as a novel approach for the management of PD based on the remarkable improvement in motor functions denoting antiparkinsonian efficacy via antioxidant, anti-inflammatory, antiapoptotic, neuroprotective and neurorestorative mechanisms. These effects were linked to DPP-4 inhibition, reduced neurodegeneration and enhanced DA synthesis.
Collapse
Affiliation(s)
- Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | | | | | | |
Collapse
|
3
|
Scott CL, Tfp ZM, Beckham KSH, Douce G, Mowat AM. Signal regulatory protein alpha (SIRPα) regulates the homeostasis of CD103(+) CD11b(+) DCs in the intestinal lamina propria. Eur J Immunol 2014; 44:3658-68. [PMID: 25236797 PMCID: PMC4284040 DOI: 10.1002/eji.201444859] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022]
Abstract
Signal regulatory protein alpha (SIRPα/CD172a) is a conserved transmembrane protein thought to play an inhibitory role in immune function by binding the ubiquitous ligand CD47. SIRPα expression has been used to identify dendritic cell subsets across species and here we examined its expression and function on intestinal DCs in mice. Normal mucosa contains four subsets of DCs based on their expression of CD103 and CD11b and three of these express SIRPα. However, loss of SIRPα signaling in mice leads to a selective reduction in the CD103+CD11b+ subset of DCs in the small intestine, colon, and among migratory DCs in the mesenteric lymph node. In parallel, these mice have reduced numbers of TH17 cells in steady-state intestinal mucosa, and a defective TH17 response to Citrobacter infection. Identical results were obtained in CD47KO mice. DC precursors from SIRPα mutant mice had an enhanced ability to generate CD103+CD11b+ DCs in vivo, but CD103+CD11b+ DCs from mutant mice were more prone to die by apoptosis. These data show a previously unappreciated and crucial role for SIRPα in the homeostasis of CD103+CD11b+ DCs in the intestine, as well as providing further evidence that this subset of DCs is critical for the development of mucosal TH17 responses.
Collapse
Affiliation(s)
- Charlotte L Scott
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Veterinary, Medical and Life Sciences, University of Glasgow, Scotland, UK; VIB Ghent University, Inflammation Research Centre (IRC), Laboratory of Immunoregulation, Ghent (Zwijnaarde), Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | |
Collapse
|
4
|
Koshimizu H, Takao K, Matozaki T, Ohnishi H, Miyakawa T. Comprehensive behavioral analysis of cluster of differentiation 47 knockout mice. PLoS One 2014; 9:e89584. [PMID: 24586890 PMCID: PMC3933641 DOI: 10.1371/journal.pone.0089584] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Cluster of differentiation 47 (CD47) is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα), a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS), such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRPα. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO) mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley's three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Keizo Takao
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Ohnishi
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
- * E-mail: (HO); (TM)
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (HO); (TM)
| |
Collapse
|
5
|
Marschinke F, Hashemian S, Matozaki T, Oldenborg PA, Strömberg I. The absence of CD47 promotes nerve fiber growth from cultured ventral mesencephalic dopamine neurons. PLoS One 2012; 7:e45218. [PMID: 23049778 PMCID: PMC3458886 DOI: 10.1371/journal.pone.0045218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022] Open
Abstract
In ventral mesencephalic organotypic tissue cultures, two timely separated sequences of nerve fiber growth have been observed. The first appearing nerve fiber pattern is a long-distance outgrowth that occurs before astrocytes start to proliferate and migrate to form an astrocytic monolayer that finally surrounds the tissue slice. These long-distance growing nerve fibers are retracted as the astrocytes migrate, and are followed by a secondary outgrowth. The secondary outgrowth is persistent in time but reaches short distances, comparable with outgrowth seen from a dopaminergic graft implanted to the brain. The present study was focused on the interaction between the astrocytes and the long-distance growing non-glial associated nerve fibers. Cross talk between astroglia and neurite formation might occur through the integrin-associated protein CD47. CD47 serves as a ligand for signal regulatory protein (SIRP) α and as a receptor for the extracellular matrix protein thrombospondin-1 (TSP-1). Embryonic day 14 ventral mesencephalic tissue from CD47+/+ and CD47−/− mice was used to investigate astrocytic migration and the tyrosine hydroxylase (TH) –positive outgrowth that occurred remote from the astrocytes. TH-immunohistochemistry demonstrated that the non-glial-associated nerve fiber outgrowth in CD47−/− cultures reached significantly longer distances and higher density compared to nerve fibers formed in CD47+/+ cultures at 14 days in vitro. These nerve fibers often had a dotted appearance in CD47+/+ cultures. No difference in the astrocytic migration was observed. Further investigations revealed that the presence of CD47 in control culture did neither hamper non-glial-associated growth through SIRPα nor through TSP-1 since similar outgrowth was found in SIRPα mutant cultures and in CD47+/+ cultures treated with blocking antibodies against the TSP-1, respectively, as in the control cultures. In conclusion, long-distance growing nerve fiber formation is promoted by the absence of CD47, even though the presence of astrocytes is not inhibited.
Collapse
Affiliation(s)
| | - Sanaz Hashemian
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ingrid Strömberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
6
|
Maruyama T, Kusakari S, Sato-Hashimoto M, Hayashi Y, Kotani T, Murata Y, Okazawa H, Oldenborg PA, Kishi S, Matozaki T, Ohnishi H. Hypothermia-induced tyrosine phosphorylation of SIRPα in the brain. J Neurochem 2012; 121:891-902. [DOI: 10.1111/j.1471-4159.2012.07748.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Koshimizu H, Suzuki S, Araki T, Yamada M, Kojima M, Hatanaka H. BIT/SHPS-1 promotes antiapoptotic effect of BDNF on low potassium-induced cell death of cultured cerebellar granule neurons. Cell Mol Neurobiol 2011; 31:1027-32. [PMID: 21553247 DOI: 10.1007/s10571-011-9700-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
Brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1 (BIT/SHPS-1) is a neuronal adhesion molecule that is highly expressed in cerebellar granule neurons (CGNs); however its function in CGNs remains unclear. Our previous studies indicated that BIT/SHPS-1 is able to modulate the antiapoptotic effect of brain-derived neurotrophic factor (BDNF) on CNS neurons by cell type-specific mechanisms. In this article, we have studied the role of BIT/SHPS-1 in the antiapoptotic function of BDNF on low potassium (LK)-induced cell death of cultured CGNs which is an in vitro model system of neuronal apoptosis during brain development. Cultured rat CGNs were transduced with wild-type rat BIT/SHPS-1 (BIT/SHPS-1(WT)), its 4F-mutant (BIT/SHPS-1(4F), in which all cytoplasmic tyrosine residues were substituted with phenylalanine), or nuclear localization signal-attached beta-galactosidase (NLS-LacZ, as control)-expressing adenoviruses. Expression of BIT/SHPS-1(WT) and BIT/SHPS-1(4F) alone did not affect steady-state cell viability. Tyrosine phosphorylation of BIT/SHPS-1 was only detected in BIT/SHPS-1(WT)-expressing cultures in the presence and the absence of BDNF. When subjected to LK in the presence of BDNF, BIT/SHPS-1(WT)- and BIT/SHPS-1(4F)-expressing cultures showed a significant resistance to cell death, while the control virus-transfected culture did not. In addition, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, attenuated the antiapoptotic effect of BDNF on BIT/SHPS-1(WT)-, and BIT/SHPS-1(4F)-expressing cultures. These results demonstrated that in both tyrosine phosphorylation-independent and PI3-K-dependent manners, BIT/SHPS-1 promotes the antiapoptotic effect of BDNF on the LK-induced cell death of CGNs.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Numakawa T, Matsumoto T, Numakawa Y, Richards M, Yamawaki S, Kunugi H. Protective Action of Neurotrophic Factors and Estrogen against Oxidative Stress-Mediated Neurodegeneration. J Toxicol 2011; 2011:405194. [PMID: 21776259 PMCID: PMC3135156 DOI: 10.1155/2011/405194] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/28/2011] [Accepted: 03/29/2011] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Low levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important for maintenance of neuronal function, though elevated levels lead to neuronal cell death. A complex series of events including excitotoxicity, Ca(2+) overload, and mitochondrial dysfunction contributes to oxidative stress-mediated neurodegeneration. As expected, many antioxidants like phytochemicals and vitamins are known to reduce oxidative toxicity. Additionally, growing evidence indicates that neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and estrogens significantly prevent neuronal damage caused by oxidative stress. Here, we review and discuss recent studies addressing the protective mechanisms of neurotrophic factors and estrogen within this system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Tomoya Matsumoto
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yumiko Numakawa
- Peptide-prima Co., Ltd., 1-25-81, Nuyamazu, Kumamoto 861-2102, Japan
| | - Misty Richards
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- The Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Shigeto Yamawaki
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
- Core Research for Evolutional Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
9
|
Abstract
The molecular basis for regulation of dendritic cell (DC) development and homeostasis remains unclear. Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is predominantly expressed in DCs, mediates cell-cell signaling by interacting with CD47, another immunoglobulin superfamily protein. We now show that the number of CD11c(high) DCs (conventional DCs, or cDCs), in particular, that of CD8-CD4+ (CD4+) cDCs, is selectively reduced in secondary lymphoid tissues of mice expressing a mutant form of SIRPα that lacks the cytoplasmic region. We also found that SIRPα is required intrinsically within cDCs or DC precursors for the homeostasis of splenic CD4+ cDCs. Differentiation of bone marrow cells from SIRPα mutant mice into DCs induced by either macrophage-granulocyte colony-stimulating factor or Flt3 ligand in vitro was not impaired. Although the accumulation of the immediate precursors of cDCs in the spleen was also not impaired, the half-life of newly generated splenic CD4+ cDCs was markedly reduced in SIRPα mutant mice. Both hematopoietic and nonhematopoietic CD47 was found to be required for the homeostasis of CD4+ cDCs and CD8-CD4- (double negative) cDCs in the spleen. SIRPα as well as its ligand, CD47, are thus important for the homeostasis of CD4+ cDCs or double negative cDCs in lymphoid tissues.
Collapse
|
10
|
de Pablo Y, Pérez-García MJ, Georgieva MV, Sanchis D, Lindqvist N, Soler RM, Comella JX, Llovera M. Tyr-701 is a new regulatory site for neurotrophin receptor TrkA trafficking and function. J Neurochem 2008; 104:124-39. [PMID: 18173729 DOI: 10.1111/j.1471-4159.2007.05027.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tropomyosin-related kinase A (TrkA) receptor mediates the effects exerted by nerve growth factor on several subpopulations of neuronal cells. Ligand binding to TrkA induces receptor autophosphorylation on several tyrosine residues and the activation of signaling cascades. In this study, we describe a new site relevant for TrkA regulation, the tyrosine 701 (Y701), which is important for receptor trafficking and activation. Y701 replacement by aspartate or phenylalanine reduces receptor internalization rate and decreases the colocalization and association of TrkA with clathrin heavy chain, demonstrating that Y701 constitutes a YxxPhi (YRKF701-704) trafficking motif relevant for the regulation of receptor endocytosis. In accordance with this hypothesis, the colocalization of Y701 mutant receptors with a lysosomal marker is also reduced giving support to the involvement of the YRKF701-704 motif in the lysosomal targeting of TrkA receptors. Contrary to what was expected, substitution of Y701 for an Asp in order to mimic phosphorylation, impairs TrkA ability to mediate nerve growth factor-induced differentiation, although the mutant receptor retains its in vitro kinase activity. This is the first evidence that a Tyr residue can simultaneously regulate TrkA receptor trafficking and activity.
Collapse
Affiliation(s)
- Yolanda de Pablo
- Cell Signaling and Apoptosis Group, Department Ciències Mèdiques Bàsiques, IRBLLEIDA, Lleida, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 2007; 22:1251-67. [PMID: 17647198 PMCID: PMC2515712 DOI: 10.14670/hh-22.1251] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interest in the diverse biology of protein tyrosine phosphatases that are encoded by more than 100 genes in the human genome continues to grow at an accelerated pace. In particular, two cytoplasmic protein tyrosine phosphatases composed of two Src homology 2 (SH2) NH2-terminal domains and a C-terminal protein-tyrosine phosphatase domain referred to as SHP-1 and SHP-2 are known to govern a host of cellular functions. SHP-1 and SHP-2 modulate progenitor cell development, cellular growth, tissue inflammation, and cellular chemotaxis, but more recently the role of SHP-1 and SHP-2 to directly control cell survival involving oxidative stress pathways has come to light. SHP-1 and SHP-2 are fundamental for the function of several growth factor and metabolic pathways yielding far reaching implications for disease pathways and disorders such as diabetes, neurodegeneration, and cancer. Although SHP-1 and SHP-2 can employ similar or parallel cellular pathways, these proteins also clearly exert opposing effects upon downstream cellular cascades that affect early and late apoptotic programs. SHP-1 and SHP-2 modulate cellular signals that involve phosphatidylinositol 3-kinase, Akt, Janus kinase 2, signal transducer and activator of transcription proteins, mitogen-activating protein kinases, extracellular signal-related kinases, c-Jun-amino terminal kinases, and nuclear factor-kappaB. Our progressive understanding of the impact of SHP-1 and SHP-2 upon multiple cellular environments and organ systems should continue to facilitate the targeted development of treatments for a variety of disease entities.
Collapse
Affiliation(s)
- Z Z Chong
- Division of Cellular and Molecular Cerebral Ischemia, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
12
|
Abstract
Most obese subjects exhibit leptin resistance, thus restricting the value of direct leptin administration for treatment of obesity. Understanding the leptin signalling mechanism has become crucial for design of novel therapeutic strategies for leptin-resistant/obese patients. The SH2-containing cytoplasmic tyrosine phosphatase Shp2 has recently been shown to play a critical role in leptin signalling and functions in hypothalamic control of energy balance and metabolism. Shp2 appears to downregulate the LepRb-STAT3 pathway while promoting extracellular-regulated kinase activation by leptin. Overall, Shp2 is a leptin signal enhancer, as evidenced by the obese and hyperleptinemic phenotype of mutant mice with Shp2 deleted in postmitotic forebrain neurons. Pharmaceutical enhancement of Shp2 activity may be a new approach worthy of consideration in clinical treatment of leptin resistance and obesity. This article discusses the significance of recent experimental data on Shp2 and also the prospects for using Shp2 as a therapeutic target for obese patients.
Collapse
Affiliation(s)
- Gen-Sheng Feng
- Program in Signal Transduction, The Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Kang B, Liang Y, Shan Y, Guo M, Liu S, Fu X, Cao H, Wu M, Wang H. SIRPα negatively regulates differentiation of PC12 cell. ACTA ACUST UNITED AC 2005; 138:205-14. [PMID: 15964662 DOI: 10.1016/j.molbrainres.2005.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Revised: 03/22/2005] [Accepted: 04/18/2005] [Indexed: 02/04/2023]
Abstract
Signal regulatory protein alpha (SIRPalpha) is an Ig superfamily protein whose cytoplasmic region contains immunoreceptor tyrosine-based inhibitory motif (ITIM), which when tyrosine phosphorylated binds the SH2-domain containing phosphatase 2 (SHP-2). Both SIRPalpha and SHP-2 are highly expressed in brain. Murine cerebellar cells cultured on SIRPalpha-coated surface exhibit enhanced neurite outgrowth and SIRPalpha is localized at sites of synaptogenesis in postnatal mouse brain. In this study, we show that nerve growth factor (NGF) stimulation resulted in elevated SIRPalpha expression during PC12 differentiation. We also show that NGF-induced morphological differentiation, but not growth arrest response, was inhibited by ectopic SIRPalpha expression. PC12 cells stably expressing SIRPalpha proliferated more rapidly than mock-transfected cells. The activity of c-jun N-terminal kinase (JNK) decreased in SIRPalpha-transfected PC12 cells, whereas nuclear factor-kappaB (NF-kappaB) activity increased. Collectively, our results suggest that SIRPalpha may stabilize synaptic connections by inhibiting improper neurite outgrowth and might realize its neuronal function, at least in part, by modulating JNK and NF-kappaB activity.
Collapse
Affiliation(s)
- Bin Kang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rusanescu G, Yang W, Bai A, Neel BG, Feig LA. Tyrosine phosphatase SHP-2 is a mediator of activity-dependent neuronal excitotoxicity. EMBO J 2005; 24:305-14. [PMID: 15650750 PMCID: PMC545812 DOI: 10.1038/sj.emboj.7600522] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 11/24/2004] [Indexed: 02/06/2023] Open
Abstract
Calcium influx can promote neuronal differentiation and survival, at least in part by activating Ras and its downstream targets, including the Erk pathway. However, excessive calcium influx can initiate molecular signals leading to neuronal death during excitotoxicity or in neurodegenerative diseases. Here we describe a new signaling pathway associated with calcium influx that contributes to neuronal cell death in cerebellar neurons. Influx of calcium, mediated either by L-type voltage-sensitive calcium channels or glutamate receptors, is associated with the suppression of brain-derived neurotrophic factor (BDNF) activation of Ras and its effectors Erk and Akt. This is the result of enhanced association of the tyrosine phosphatase Shp-2 with TrkB receptors, which inhibits BDNF-induced TrkB autophosphorylation and activation. Deletion of the Shp2 gene in neuronal cultures reverses inhibition of TrkB function and increases neuronal survival after extended depolarization or glutamate treatment. These findings implicate Shp-2 in a feedback system initiated by calcium that negatively regulates neurotrophin signaling and sensitizes neurons to excitotoxicity.
Collapse
Affiliation(s)
- Gabriel Rusanescu
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA, USA
| | - Wentian Yang
- Cancer Biology Program, Division of Hematology Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ailin Bai
- Cancer Biology Program, Division of Hematology Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Benjamin G Neel
- Cancer Biology Program, Division of Hematology Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Larry A Feig
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA, USA
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA. Tel.: +1 617 636 6956; Fax: +1 617 636 2409; E-mail:
| |
Collapse
|
15
|
Abstract
Trk receptors are a family of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4 (NT3 and NT4). Neurotrophin signaling through these receptors regulates cell survival, proliferation, the fate of neural precursors, axon and dendrite growth and patterning, and the expression and activity of functionally important proteins, such as ion channels and neurotransmitter receptors. In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. The cytoplasmic domains of Trk receptors contain several sites of tyrosine phosphorylation that recruit intermediates in intracellular signaling cascades. As a result, Trk receptor signaling activates several small G proteins, including Ras, Rap-1, and the Cdc-42-Rac-Rho family, as well as pathways regulated by MAP kinase, PI 3-kinase and phospholipase-C-gamma (PLC-gamma). Trk receptor activation has different consequences in different cells, and the specificity of downstream Trk receptor-mediated signaling is controlled through expression of intermediates in these signaling pathways and membrane trafficking that regulates localization of different signaling constituents. Perhaps the most fascinating aspect of Trk receptor-mediated signaling is its interplay with signaling promoted by the pan-neurotrophin receptor p75NTR. p75NTR activates a distinct set of signaling pathways within cells that are in some instances synergistic and in other instances antagonistic to those activated by Trk receptors. Several of these are proapoptotic but are suppressed by Trk receptor-initiated signaling. p75NTR also influences the conformations of Trk receptors; this modifies ligand-binding specificity and affinity with important developmental consequences.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California Veterans Administration Medical Center, San Francisco, California 94143, USA.
| | | |
Collapse
|
16
|
Wang XX, Dangott LJ, Pfenninger KH. The heterogeneous growth cone glycoprotein gp93 is identical to the signal regulatory protein SIRPalpha/SHPS-1/BIT. J Neurochem 2003; 86:55-60. [PMID: 12807424 DOI: 10.1046/j.1471-4159.2003.01810.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth cone gp93 is a highly heterogeneous membrane glycoprotein with an Mr of about 93 kDa. It was purified from adult rat brain and microsequenced. The sequences of four different peptide fragments of gp93 matched those of the 'signal regulatory protein' SIRPalpha (also known as SHPS-1, BIT or P84), an Ig superfamily member. SIRPalpha contains a cytoplasmic tail that is a tyrosine kinase substrate and binds the protein tyrosine phosphatase SHP-2. SIRPalpha and gp93 also were immunochemically cross-reactive. A PCR strategy was used to determine whether gp93/SIRPalpha heterogeneity in the brain depended upon the presence of different transcripts and, thus, sequence heterogeneity. However, we observed only a single full-length transcript. A short splice variant also was detected. These data identify gp93 as the Ig superfamily member SIRPalpha. Together with our previous results, the data also demonstrate that, in rat brain, gp93/SIRPalpha heterogeneity is the result of differential glycosylation (plus phosphorylation), rather than sequence heterogeneity.
Collapse
Affiliation(s)
- Xiaoxin X Wang
- Department of Cellular and Structural Biology, University of Colorado School of Medicine, Denver 80262, USA
| | | | | |
Collapse
|