1
|
Almeida AS, Soares NL, Vieira M, Gramsbergen JB, Vieira HLA. Carbon Monoxide Releasing Molecule-A1 (CORM-A1) Improves Neurogenesis: Increase of Neuronal Differentiation Yield by Preventing Cell Death. PLoS One 2016; 11:e0154781. [PMID: 27144388 PMCID: PMC4856303 DOI: 10.1371/journal.pone.0154781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022] Open
Abstract
Cerebral ischemia and neurodegenerative diseases lead to impairment or death of neurons in the central nervous system. Stem cell based therapies are promising strategies currently under investigation. Carbon monoxide (CO) is an endogenous product of heme degradation by heme oxygenase (HO) activity. Administration of CO at low concentrations produces several beneficial effects in distinct tissues, namely anti-apoptotic and anti-inflammatory. Herein the CO role on modulation of neuronal differentiation was assessed. Three different models with increasing complexity were used: human neuroblastoma SH-S5Y5 cell line, human teratocarcinoma NT2 cell line and organotypic hippocampal slice cultures (OHSC). Cell lines were differentiated into post-mitotic neurons by treatment with retinoic acid (RA) supplemented with CO-releasing molecule A1 (CORM-A1). CORM-A1 positively modulated neuronal differentiation, since it increased final neuronal production and enhanced the expression of specific neuronal genes: Nestin, Tuj1 and MAP2. Furthermore, during neuronal differentiation process, there was an increase in proliferative cell number (ki67 mRNA expressing cells) and a decrease in cell death (lower propidium iodide (PI) uptake, limitation of caspase-3 activation and higher Bcl-2 expressing cells). CO supplementation did not increase the expression of RA receptors. In the case of SH-S5Y5 model, small amounts of reactive oxygen species (ROS) generation emerges as important signaling molecules during CO-promoted neuronal differentiation. CO's improvement of neuronal differentiation yield was validated using OHSC as ex vivo model. CORM-A1 treatment of OHSC promoted higher levels of cells expressing the neuronal marker Tuj1. Still, CORM-A1 increased cell proliferation assessed by ki67 expression and also prevented cell death, which was followed by increased Bcl-2 expression, decreased levels of active caspase-3 and PI uptake. Likewise, ROS signaling emerged as key factors in CO's increasing number of differentiated neurons in OHSC. In conclusion, CO's increasing number of differentiated neurons is a novel biological role disclosed herein. CO improves neuronal yield due to its capacity to reduce cell death, promoting an increase in proliferative population. However, one cannot disregard a direct CO's effect on specific cellular processes of neuronal differentiation. Further studies are needed to evaluate how CO can potentially modulate cell mechanisms involved in neuronal differentiation. In summary, CO appears as a promising therapeutic molecule to stimulate endogenous neurogenesis or to improve in vitro neuronal production for cell therapy strategies.
Collapse
Affiliation(s)
- Ana S. Almeida
- CEDOC, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
| | - Nuno L. Soares
- CEDOC, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Melissa Vieira
- CEDOC, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Jan Bert Gramsbergen
- Institute of Molecular Medicine, University of Southern Denmark, Winsløwparken 21, DK-5000 Odense C, Denmark
| | - Helena L. A. Vieira
- CEDOC, Faculdade de Ciência Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
2
|
Holdsworth-Carson SJ, Zaitseva M, Girling JE, Vollenhoven BJ, Rogers PAW. Common fibroid-associated genes are differentially expressed in phenotypically dissimilar cell populations isolated from within human fibroids and myometrium. Reproduction 2014; 147:683-92. [DOI: 10.1530/rep-13-0580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Uterine fibroids are a prevalent gynaecological condition in reproductive-aged women and are the commonest reason for hysterectomy. The cellular composition of clonal fibroids are heterogeneous, with phenotypically dissimilar cells that include smooth muscle cells (SMC), vascular SMC (VSMC) and fibroblasts. The aim of our study was to investigate genes that are commonly differentially expressed between fibroid and myometrial whole tissues in phenotypically different sub-populations of cells isolated from fibroid and myometrium. Genes to be investigated by fluorescence-activated cell sorting, quantitative real-time PCR and immunocytochemistry include transforming growth factor β (TGFB) and retinoic acid (RA) signalling families and steroid hormone receptors. We hypothesised that each cell population isolated from fibroid and myometrium would differ in the expression of fibroid-associated genes. We demonstrated that phenotypically different cellular constituents of uterine fibroids differentially express cellular RA-binding protein 2 (CRABP2), progesterone receptor B (PRB) and TGFB receptor 2 mRNA in fibroid-derived cells of VSMC and SMC phenotype. CRABP2 mRNA was also differentially expressed in fibroblasts and VSMC sub-populations from within clonal fibroid tumours. We conclude that differential regulation of RA, TGFB and PR pathway transcription occurs in fibroid-associated SMC and -fibroblasts and that investigation of paracrine interactions between different cell types within the fibroid microenvironment provides an important new paradigm for understanding the pathophysiology of this common disease.
Collapse
|
3
|
Honecker F, Rohlfing T, Harder S, Braig M, Gillis AJ, Glaesener S, Barett C, Bokemeyer C, Buck F, Brümmendorf TH, Looijenga LH, Balabanov S. Proteome analysis of the effects of all-trans retinoic acid on human germ cell tumor cell lines. J Proteomics 2014; 96:300-13. [PMID: 24269351 DOI: 10.1016/j.jprot.2013.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 01/16/2023]
|
4
|
Dyshlovoy SA, Naeth I, Venz S, Preukschas M, Sievert H, Jacobsen C, Shubina LK, Gesell Salazar M, Scharf C, Walther R, Krepstakies M, Priyadarshini P, Hauber J, Fedorov SN, Bokemeyer C, Stonik VA, Balabanov S, Honecker F. Proteomic profiling of germ cell cancer cells treated with aaptamine, a marine alkaloid with antiproliferative activity. J Proteome Res 2012; 11:2316-30. [PMID: 22409352 DOI: 10.1021/pr300170p] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aaptamine is a marine compound isolated from the sponge Aaptos aaptos showing antiproliferative properties via an undefined mode of action. We analyzed the effects of aaptamine treatment on the proliferation and protein expression of the pluripotent human embryonal carcinoma cell line NT2. Effects on proliferation, cell cycle distribution, and induction of apoptosis were analyzed. At lower concentrations, including the IC50 of 50 μM, aaptamine treatment resulted in a G2/M phase cell cycle arrest, whereas at higher concentrations, induction of apoptosis was seen. Differentially expressed proteins were assessed by 2D-PAGE and mass spectrometry, followed by verification and analysis of protein modifications of the most significantly up- and down-regulated proteins. Aaptamine treatment at the IC50 for 48 h resulted in alteration of 10 proteins, of which five each showed up- and down-regulation. Changes in the 2D map were frequently noticed as a result of post-transcriptional modifications, e.g., of the hypusine modification of the eukaryotic initiation factor 5A (eIF5A). Observed alterations such as increased expression of CRABP2 and hypusination of eIF5A have previously been identified during differentiation of pluripotent cells. For the first time, we describe changes in protein expression caused by aaptamine, providing valuable information regarding the mode of action of this compound.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Haematology and Bone Marrow Transplantation, Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Tacke F, Gäbele E, Bataille F, Schwabe RF, Hellerbrand C, Klebl F, Straub RH, Luedde T, Manns MP, Trautwein C, Brenner DA, Schölmerich J, Schnabl B. Bone morphogenetic protein 7 is elevated in patients with chronic liver disease and exerts fibrogenic effects on human hepatic stellate cells. Dig Dis Sci 2007; 52:3404-15. [PMID: 17415633 DOI: 10.1007/s10620-007-9758-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 01/01/2007] [Indexed: 12/09/2022]
Abstract
Hepatic stellate cells (HSCs) are the main extracellular matrix (ECM)-producing cells in liver fibrogenesis. The excessive synthesis of ECM proteins deteriorates hepatic architecture and results in liver fibrosis and cirrhosis. This study investigated the role of bone morphogenetic protein 7 (BMP7) as a member of the transforming growth factor (TGF)-beta superfamily in chronic liver disease. Plasma levels of BMP7 were significantly elevated in patients with chronic liver disease compared with healthy controls. Immunohistochemistry of cirrhotic human liver demonstrated upregulated BMP7 protein expression in hepatocytes as compared with normal human liver. Because gene expression for all putative BMP7 receptors was induced during the culture activation process of primary human HSCs, we studied the effects of BMP7 on hTERT immortalized human HSCs in vitro. BMP7, as expressed and secreted after infection with adenoviruses encoding BMP7 (AdBMP7), increased proliferation of HSCs. The mRNA and protein expression of type I collagen and fibronectin was increased in BMP7-stimulated HSCs. Elevated systemic and hepatic levels of BMP7 in patients with chronic liver disease may contribute to progression of liver fibrogenesis in vivo.
Collapse
Affiliation(s)
- Frank Tacke
- Medical Clinic III, University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sjoelund V, Kaltashov IA. Transporter-to-trap conversion: a disulfide bond formation in cellular retinoic acid binding protein I mutant triggered by retinoic acid binding irreversibly locks the ligand inside the protein. Biochemistry 2007; 46:13382-90. [PMID: 17958379 DOI: 10.1021/bi700867c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transport proteins must bind their ligands reversibly to enable release at the point of delivery, while irreversible binding is usually associated with the extreme cases of ligand sequestration. Protein conformational dynamics is an important modulator of binding kinetics, as increased flexibility in the regions adjacent to the binding site may facilitate both association and dissociation processes. Ligand entry to, and exit from, the internal binding site of the cellular retinoic acid binding protein I (CRABP I) occurs via a flexible portal region, which functions as a dynamic aperture. We designed and expressed a CRABP I mutant (A35C/T57C), in which a small-scale conformational switch caused by the ligand binding event triggers formation of a disulfide bond in the portal region, thereby arresting structural fluctuations and effectively locking the ligand inside the binding cavity. At the same time, no formation of the disulfide bond is observed in the apo form of the mutant, and most characteristics of the mutant, including protein stability, are very similar to those of the wild-type protein in the absence of retinoic acid. The mutation does not alter the kinetics of retinoic acid binding to the protein, although the disulfide formation makes the binding effectively irreversible, as suggested by the absence of retinoic acid transfer from the holo form of the mutant to lipid vesicles in the absence of a reducing agent. Taken together, these data suggest that the disulfide bond formation in the portal region arrests large-scale structural fluctuations, which are required for retinoic acid release from the protein. The unique properties of the CRABP I mutant described in this work can be used to inspire and guide a design of nanodevices for multiple tasks ranging from sequestering small-molecule toxins in both tissue and circulation to nutrient deprivation of pathogens.
Collapse
Affiliation(s)
- Virginie Sjoelund
- Department of Chemistry and Molecular and Cellular Biology Program, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
7
|
Dey N, De PK, Wang M, Zhang H, Dobrota EA, Robertson KA, Durden DL. CSK controls retinoic acid receptor (RAR) signaling: a RAR-c-SRC signaling axis is required for neuritogenic differentiation. Mol Cell Biol 2007; 27:4179-97. [PMID: 17325034 PMCID: PMC1900023 DOI: 10.1128/mcb.01352-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Herein, we report the first evidence that c-SRC is required for retinoic acid (RA) receptor (RAR) signaling, an observation that suggests a new paradigm for this family of nuclear hormone receptors. We observed that CSK negatively regulates RAR functions required for neuritogenic differentiation. CSK overexpression inhibited RA-mediated neurite outgrowth, a result which correlated with the inhibition of the SFK c-SRC. Consistent with an extranuclear effect of CSK on RAR signaling and neurite outgrowth, CSK overexpression blocked the downstream activation of RAC1. The conversion of GDP-RAC1 to GTP-RAC1 parallels the activation of c-SRC as early as 15 min following all-trans-retinoic acid treatment in LA-N-5 cells. The cytoplasmic colocalization of c-SRC and RARgamma was confirmed by immunofluorescence staining and confocal microscopy. A direct and ligand-dependent binding of RAR with SRC was observed by surface plasmon resonance, and coimmunoprecipitation studies confirmed the in vivo binding of RARgamma to c-SRC. Deletion of a proline-rich domain within RARgamma abrogated this interaction in vivo. CSK blocked the RAR-RA-dependent activation of SRC and neurite outgrowth in LA-N-5 cells. The results suggest that transcriptional signaling events mediated by RA-RAR are necessary but not sufficient to mediate complex differentiation in neuronal cells. We have elucidated a nongenomic extranuclear signal mediated by the RAR-SRC interaction that is negatively regulated by CSK and is required for RA-induced neuronal differentiation.
Collapse
Affiliation(s)
- Nandini Dey
- Section of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer Center and Blood Disorders Services, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30022, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Schnabl B, Hu K, Mühlbauer M, Hellerbrand C, Stefanovic B, Brenner DA, Schölmerich J. Zinc finger protein 267 is up-regulated during the activation process of human hepatic stellate cells and functions as a negative transcriptional regulator of MMP-10. Biochem Biophys Res Commun 2005; 335:87-96. [PMID: 16054593 DOI: 10.1016/j.bbrc.2005.07.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 07/13/2005] [Indexed: 01/06/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is the central event in the development of liver fibrosis and cirrhosis. The transdifferentiation process of quiescent into activated HSCs requires a complete reprogramming in gene expression, which is governed by modulation of transcriptional activators or repressors. Using microarray analysis to identify genes differentially expressed during the activation process of human HSCs, zinc finger protein 267 (ZNF267) mRNA was up-regulated in activated HSCs and in cirrhotic human liver. ZNF267 belongs to the family of Kruppel-like zinc fingers and contains a conserved KRAB (Kruppel associated box) A and B domain in the N-terminal part outside the C-terminal region of zinc fingers. ZNF267 constructs containing enhanced cyan fluorescence protein were constitutively localized in the nucleus. When fused to GAL4 DNA binding domain, full-length ZNF267 and all constructs encompassing KRAB A domain showed transcriptional repressor activity. Microarray analysis and RNase protection assays showed that ZNF267 represses MMP-10 gene expression, which was confirmed by reporter gene assays. Furthermore, ZNF267 binds to the MMP-10 promoter region as demonstrated by chromatin immunoprecipitation assays. In conclusion, our results suggest that ZNF267 as a negative transcriptional regulator of MMP-10 might promote liver fibrogenesis through alteration of matrix degradation in vivo.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|