1
|
Crespi A, Plutino S, Sciaccaluga M, Righi M, Borgese N, Fucile S, Gotti C, Colombo SF. The fifth subunit in α3β4 nicotinic receptor is more than an accessory subunit. FASEB J 2018; 32:4190-4202. [PMID: 29505300 DOI: 10.1096/fj.201701377r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The α3β4 subtype is the predominant neuronal nicotinic acetylcholine receptor present in the sensory and autonomic ganglia and in a subpopulation of brain neurons. This subtype can form pentameric receptors with either 2 or 3 β4 subunits that have different pharmacologic and functional properties. To further investigate the role of the fifth subunit, we coexpressed a dimeric construct coding for a single polypeptide containing the β4 and α3 subunit sequences, with different monomeric subunits. With this strategy, which allowed the formation of single populations of receptors with unique stoichiometry, we demonstrated with immunofluorescence and biochemical and functional assays that only the receptors with 3 β4 subunits are efficiently expressed at the plasma membrane. Moreover, the LFM export motif of β4 subunit in the fifth position exerts a unique function in the regulation of the intracellular trafficking of the receptors, their exposure at the cell surface, and consequently, their function, whereas the same export motif present in the β4 subunits forming the acetylcholine binding site is dispensable.-Crespi, A., Plutino, S., Sciaccaluga, M., Righi, M., Borgese, N., Fucile, S., Gotti, C., Colombo, S. F. The fifth subunit in α3β4 nicotinic receptor is more than an accessory subunit.
Collapse
Affiliation(s)
- Arianna Crespi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Milan, Italy
| | - Simona Plutino
- Dipartimento di Fisiologia e Farmacologia, Università di Roma La Sapienza, Rome, Italy; and
| | - Miriam Sciaccaluga
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Marco Righi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Milan, Italy
| | - Nica Borgese
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Milan, Italy
| | - Sergio Fucile
- Dipartimento di Fisiologia e Farmacologia, Università di Roma La Sapienza, Rome, Italy; and.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Cecilia Gotti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Milan, Italy
| | - Sara Francesca Colombo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, Milan, Italy
| |
Collapse
|
2
|
Crespi A, Colombo SF, Gotti C. Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update. Br J Pharmacol 2017; 175:1869-1879. [PMID: 28294298 DOI: 10.1111/bph.13777] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/26/2017] [Accepted: 03/04/2017] [Indexed: 01/03/2023] Open
Abstract
Neuronal nicotinic ACh receptors (nAChRs) are a family of ACh-gated cation channels, and their homeostasis or proteostasis is essential for the correct physiology of the central and peripheral nervous systems. The proteostasis network regulates the folding, assembly, degradation and trafficking of nAChRs in order to ensure their efficient and functional expression at the cell surface. However, as nAChRs are multi-subunit, multi-span, integral membrane proteins, the folding and assembly is a very inefficient process, and only a small proportion of subunits can form functional pentamers. Moreover, the efficiency of assembly and trafficking varies widely depending on the nAChR subtypes and the cell type in which they are expressed. A detailed understanding of the mechanisms that regulate the functional expression of nAChRs in neurons and non-neuronal cells is therefore important. The purpose of this short review is to describe more recent findings concerning the chaperone proteins and target-specific and target-nonspecific pharmacological chaperones that modulate the expression of nAChR subtypes, and the possible mechanisms that underlie the dynamic changes of cell surface nAChRs. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
|
3
|
Koperniak TM, Garg BK, Boltax J, Loring RH. Cell-specific effects on surface α7 nicotinic receptor expression revealed by over-expression and knockdown of rat RIC3 protein. J Neurochem 2013; 124:300-9. [PMID: 23157401 DOI: 10.1111/jnc.12095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 09/14/2012] [Accepted: 10/02/2012] [Indexed: 12/01/2022]
Abstract
We tested whether surface α7 nicotinic acetylcholine receptor expression is dependent on an endogenous chaperone named Resistance to Inhibitors of Cholinesterase 3 (RIC3) by comparing RIC3 protein in rat GH4C1 and human SH-EP1 cells, which express strikingly different surface receptor levels following α7 transfection. Cloned rat RIC3 exists in at least two isoforms because of an ambiguous splice site between exons 4 and 5. Both rat isoforms permit surface α7 expression in SH-EP1 and human embryonic kidney (HEK) cells measured by α-bungarotoxin binding. Contrary to expectations, endogenous RIC3 protein expression determined by immunoblots did not differ between untransfected GH4C1 or SH-EP1 cells. siRNA against rat RIC3 exon 4 and shRNA against exons 2, 5 and 6 knocked down transfected rat RIC3 expression in SH-EP1 cells and simultaneously blocked toxin binding. However, no RNAi construct blocked binding when co-transfected with α7 into GH4C1 cells. shRNA against rat exons 2 and 5 knocked down rat RIC3 protein transfected into GH4C1 cells with a time course suggesting a protein half-life of a few days. These results suggest GH4C1 cells may possess unknown chaperone(s) allowing high surface α7 expression in the absence of known RIC3 splice variants.
Collapse
Affiliation(s)
- Thomas M Koperniak
- Department of Pharmaceutical Science, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
4
|
Cardinale A, Nastrucci C, Cesario A, Russo P. Nicotine: specific role in angiogenesis, proliferation and apoptosis. Crit Rev Toxicol 2011; 42:68-89. [PMID: 22050423 DOI: 10.3109/10408444.2011.623150] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, tobacco smoking is the cause of ~5-6 million deaths per year, counting 31% and 6% of all cancer deaths (affecting 18 different organs) in middle-aged men and women, respectively. Nicotine is the addictive component of tobacco acting on neuronal nicotinic receptors (nAChR). Functional nAChR, are also present on endothelial, haematological and epithelial cells. Although nicotine itself is regularly not referred to as a carcinogen, there is an ongoing debate whether nicotine functions as a 'tumour promoter'. Nicotine, with its specific binding to nAChR, deregulates essential biological processes like regulation of cell proliferation, apoptosis, migration, invasion, angiogenesis, inflammation and cell-mediated immunity in a wide variety of cells including foetal (regulation of development), embryonic and adult stem cells, adult tissues as well as cancer cells. Nicotine seems involved in fundamental aspects of the biology of malignant diseases, as well as of neurodegeneration. Investigating the biological effects of nicotine may provide new tools for therapeutic interventions and for the understanding of neurodegenerative diseases and tumour biology.
Collapse
|
5
|
Millar NS. A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:766-76. [PMID: 19540210 DOI: 10.1016/j.bcp.2009.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop family of neurotransmitter-gated ion channels, a family that also includes receptors for gamma-aminobutyric acid, glycine and 5-hydroxytryptamine. In humans, nAChRs have been implicated in several neurological and psychiatric disorders and are major targets for pharmaceutical drug discovery. In addition, nAChRs are important targets for neuroactive pesticides in insects and in other invertebrates. Historically, nAChRs have been one of the most intensively studied families of neurotransmitter receptors. They were the first neurotransmitter receptors to be biochemically purified and the first to be characterized by molecular cloning and heterologous expression. Although much has been learnt from studies of native nAChRs, the expression of recombinant nAChRs has provided dramatic advances in the characterization of these important receptors. This review will provide a brief history of the characterization of nAChRs by heterologous expression. It will focus, in particular, upon studies of recombinant nAChRs, work that has been conducted by many hundreds of scientists during a period of almost 30 years since the molecular cloning of nAChR subunits in the early 1980s.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Lee HK, Gwalani L, Mishra V, Anandjiwala P, Sala F, Sala S, Ballesta JJ, O'Malley D, Criado M, Loring RH. Investigating the role of protein folding and assembly in cell-type dependent expression of alpha7 nicotinic receptors using a green fluorescent protein chimera. Brain Res 2009; 1259:7-16. [PMID: 19368825 DOI: 10.1016/j.brainres.2009.01.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 01/12/2009] [Accepted: 01/17/2009] [Indexed: 11/25/2022]
Abstract
To test the hypothesis that cell-dependent expression of alpha7 receptors is due to differences in protein folding or assembly, we constructed a chimeric rat alpha7 subunit with green fluorescent protein (GFP) at the receptor C-terminal. Expression of alpha7-GFP in Xenopus oocytes resulted in currents that were indistinguishable from wild type receptors but were only 33% of control. (125)I-alpha-bungarotoxin (alphaBGT) binding at the oocyte surface was reduced to 23% of wild type. Transfection of alpha7-GFP into GH4C1 cells produced fluorescence that was less intense than GFP alone, but showed significant alpha-BGT binding compared to transfection with GFP. In contrast, alpha7-GFP transfection in SH-EP1, HEK293 and CHO-CAR cells produced fluorescence without alphaBGT binding. Flow cytometry of cells transfected with alpha7-GFP indicated fluorescence in both SH-EP1 and GH4C1 cells, but surface toxin binding sites and sites immunoprecipitated using anti-GFP antibodies were undetectable in SH-EP1 cells, suggesting a problem in folding/assembly rather than trafficking. Surprisingly, integrated fluorescence intensities in GH4C1 cells transfected with alpha7-GFP did not correlate with amounts of cell surface or immunoprecipitable alphaBGT binding. Therefore, GFP folding at the C-terminal of the alpha7-GFP chimera is cell-line independent, but toxin binding is highly cell-line dependent, suggesting that if altered protein folding is involved in the cell-type dependence of alpha7 receptor expression, the phenomenon is restricted to specific protein domains. Further, C-terminal GFP-labeled alpha7 receptors decreased the efficiency of folding/assembly not only of chimeric subunits, but also wild-type subunits, suggesting that the C-terminal is an important domain for alpha7 receptor assembly.
Collapse
Affiliation(s)
- H K Lee
- Department of Pharmaceutical Science, Northeastern Univ, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Escubedo E, Camarasa J, Chipana C, García-Ratés S, Pubill D. Involvement of nicotinic receptors in methamphetamine- and MDMA-induced neurotoxicity: pharmacological implications. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:121-66. [PMID: 19897077 DOI: 10.1016/s0074-7742(09)88006-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the last years, we have focused on the study of the neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH) on the central nervous system (CNS) and their pharmacological prevention methods. In the process of this research, we have used a semipurified synaptosomal preparation from striatum of mice or rats as a reliable in vitro model to study reactive oxygen species (ROS) production by these amphetamine derivatives, which is well-correlated with their dopaminergic injury in in vivo models. Using this preparation, we have demonstrated that blockade of alpha7 nicotinic receptors with methyllycaconitine (MLA) prevents ROS production induced by MDMA and METH. Consequently, in vivo, MLA significantly prevents MDMA- and METH-induced neurotoxicity at dopaminergic level (mouse striatum), without affecting hyperthermia induced by these amphetamines. Additionally, when neuroprotection was assayed with memantine (MEM), a dual antagonist of NMDA and alpha7 receptors, an effective neuroprotection was obtained also ahead of serotonergic injury induced by MDMA in rats. MEM also prevents MDMA effect on serotonin transporter functionality and METH effect on dopamine transporter (DAT), suggesting that behavioral effects of these psychostimulants can also be modulated by MEM. Finally, we have demonstrated that MEM prevents the impaired memory function induced by MDMA, and also, using binding studies with radioligands, we have characterized the interaction of these substances with nicotinic receptors. Studies at molecular level showed that both MDMA and METH displaced competitively the binding of radioligands with homomeric alpha7 and heteromeric nicotinic acetylcholine receptors (nAChRs), indicating that they can directly interact with them. In all the cases, MDMA displayed higher affinity than METH and it was higher for heteromeric than for alpha7 subtype. Pre-incubation of differentiated PC12 cells with MDMA or METH induces nAChR upregulation in a concentration- and time-dependent manner, as many nicotinic ligands do, supporting their functional interaction with nAChRs. Such interaction expands the pharmacological profile of amphetamines and can account for some of their effects.
Collapse
Affiliation(s)
- E Escubedo
- Unitat de Farmacologia i Farmacognósia, Facultat de Farmácia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
8
|
Butler AS, Lindesay SA, Dover TJ, Kennedy MD, Patchell VB, Levine BA, Hope AG, Barnes NM. Importance of the C-terminus of the human 5-HT3A receptor subunit. Neuropharmacology 2008; 56:292-302. [PMID: 18786552 DOI: 10.1016/j.neuropharm.2008.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/25/2008] [Accepted: 08/08/2008] [Indexed: 10/25/2022]
Abstract
Amongst the family members of Cys-loop LGICs, the atypical ability of the 5-HT3A subunit to form functional homomeric receptors allowed a direct investigation of the role of the C-terminus. Deletion of the three C-terminal amino acids (DeltaGln453-DeltaTyr454-DeltaAla455) from the h5-HT3A subunit prevented formation of a specific radioligand binding site as well as expression within the cell membrane. Removal of merely the C-terminal residue (DeltaAla455) reduced specific radioligand binding (to 4+/-1% relative to the wild-type; cells grown at 37 degrees C) and also cell membrane expression; these reductions were less evident when the DeltaAla455 expressing cells were grown at 27 degrees C (specific radioligand binding levels 27+/-5% relative to wild-type also grown at 27 degrees C). Mutation of the h5-HT3A C-terminal amino acid, alanine, for either glycine (Ala455Gly), valine (Ala455Val) or leucine (Ala455Leu) reduced specific radioligand binding levels by 24+/-23%, 32+/-12% and 88+/-1%, respectively; the latter mutant also displaying reduced membrane expression. In contrast, mutation to alanine of the two amino acids preceding the C-terminal alanine (Gln453Ala and Tyr454Ala) had no detrimental effects on specific radioligand binding or cell membrane expression levels. The present study demonstrates an important role for the C-terminus in the formation of the functional h5-HT3A receptor. The partial restoration of 5-HT3 receptor binding and cell membrane expression when cells expressing C-terminal mutant 5-HT3A subunits were grown at a lower temperature (27 degrees C) suggests that the C-terminus stabilises the 5-HT3 receptor allowing subunit folding and subsequent maturation.
Collapse
Affiliation(s)
- Amy S Butler
- Cellular and Molecular Neuropharmacology Research Group, School of Experimental and Clinical Medicine, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen MX, Sandow SL, Doceul V, Chen YH, Harper H, Hamilton B, Meadows HJ, Trezise DJ, Clare JJ. Improved functional expression of recombinant human ether-a-go-go (hERG) K+ channels by cultivation at reduced temperature. BMC Biotechnol 2007; 7:93. [PMID: 18096051 PMCID: PMC2241608 DOI: 10.1186/1472-6750-7-93] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 12/20/2007] [Indexed: 11/25/2022] Open
Abstract
Background HERG potassium channel blockade is the major cause for drug-induced long QT syndrome, which sometimes cause cardiac disrhythmias and sudden death. There is a strong interest in the pharmaceutical industry to develop high quality medium to high-throughput assays for detecting compounds with potential cardiac liability at the earliest stages of drug development. Cultivation of cells at lower temperature has been used to improve the folding and membrane localization of trafficking defective hERG mutant proteins. The objective of this study was to investigate the effect of lower temperature maintenance on wild type hERG expression and assay performance. Results Wild type hERG was stably expressed in CHO-K1 cells, with the majority of channel protein being located in the cytoplasm, but relatively little on the cell surface. Expression at both locations was increased several-fold by cultivation at lower growth temperatures. Intracellular hERG protein levels were highest at 27°C and this correlated with maximal 3H-dofetilide binding activity. In contrast, the expression of functionally active cell surface-associated hERG measured by patch clamp electrophysiology was optimal at 30°C. The majority of the cytoplasmic hERG protein was associated with the membranes of cytoplasmic vesicles, which markedly increased in quantity and size at lower temperatures or in the presence of the Ca2+-ATPase inhibitor, thapsigargin. Incubation with the endocytic trafficking blocker, nocodazole, led to an increase in hERG activity at 37°C, but not at 30°C. Conclusion Our results are consistent with the concept that maintenance of cells at reduced temperature can be used to boost the functional expression of difficult-to-express membrane proteins and improve the quality of assays for medium to high-throughput compound screening. In addition, these results shed some light on the trafficking of hERG protein under these growth conditions.
Collapse
|
10
|
Roccamo AM, Barrantes FJ. Charged amino acid motifs flanking each extreme of the alphaM4 transmembrane domain are involved in assembly and cell-surface targeting of the muscle nicotinic acetylcholine receptor. J Neurosci Res 2007; 85:285-93. [PMID: 17131427 DOI: 10.1002/jnr.21123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alphaM4 transmembrane domain of the nicotinic acetylcholine receptor (AChR) is flanked by two basic amino acids (His(408) and Arg(429)) located at its cytoplasmic- and extracellular-facing extremes, respectively, at the level of the phospholipid polar head regions of the postsynaptic membrane. A series of single and double alphaM4 mutants (His(408)Ala, Arg(429)Ala, Arg(429)Glu, His(408)Ala/Arg(429)Ala, and His(408)Ala/Arg(429)Glu) of the adult muscle-type AChR were produced and coexpressed with wild-type beta, delta, and epsilon subunits as stable clones in a mammalian heterologous expression system (CHO-K1 cells). The mutants were studied by alpha-bungarotoxin ([(125)I]alpha-BTX) binding, fluorescence microscopy, and equilibrium sucrose gradient centrifugation. Cell-surface [(125)I]alpha-BTX binding diminished approximately 40% in His(408)Ala and as much as 95% in the Arg(429)Ala mutant. Reversing the amino acid charge (e.g., Arg(429)Glu) abolished cell-surface expression of AChR. Fluorescence microscopy disclosed that AChR was retained at the endoplasmic reticulum, with an enhanced occurrence of unassembled AChR species in the mutant clones. Centrifugation analysis confirmed the lack of fully assembled AChR pentamers in all mutants with the exception of His(408)Ala. We conclude that His(408) and Arg(429) in alphaM4 are involved in assembly and cell-surface targeting of muscle AChR. Arg(429) plays a more decisive role in these two processes, suggesting an asymmetric weight of the charged motifs at each extreme of the alpha subunit M4 transmembrane segment. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- A M Roccamo
- Instituto de Investigaciones Bioquimicas and UNESCO Chair of Biophysics and Molecular Neurobiology, Bahía Blanca, Argentina
| | | |
Collapse
|
11
|
Riganti L, Matteoni C, Di Angelantonio S, Nistri A, Gaimarri A, Sparatore F, Canu-Boido C, Clementi F, Gotti C. Long-term exposure to the new nicotinic antagonist 1,2-bisN-cytisinylethane upregulates nicotinic receptor subtypes of SH-SY5Y human neuroblastoma cells. Br J Pharmacol 2006; 146:1096-109. [PMID: 16273122 PMCID: PMC1751242 DOI: 10.1038/sj.bjp.0706434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nicotinic drug treatment can affect the expression of neuronal nicotinic acetylcholine receptors (nAChR) both in vivo and in vitro through molecular mechanisms not fully understood. The present study investigated the effect of the novel cytisine dimer 1,2-bisN-cytisinylethane (CC4) on nAChR natively expressed by SH-SY5Y neuroblastoma cells in culture. CC4 lacked the agonist properties of cytisine and was a potent antagonist (IC50=220 nM) on nAChRs. Chronic treatment of SH-SY5Y cells with 1 mM CC4 for 48 h increased the expression of 3H-epibatidine (3H-Epi; 3-4-fold) or 125I-alpha-bungarotoxin (125I-alphaBgtx; 1.2-fold) sensitive receptors present on the cell membrane and in the intracellular pool. Comparable data were obtained with nicotine or cytisine, but not with carbamylcholine, d-tubocurarine, di-hydro-beta-erythroidine or hexametonium. Immunoprecipitation and immunopurification studies showed that the increase in 3H-Epi-binding receptors was due to the enhanced expression of alpha3beta2 and alpha3beta2beta4 subtypes without changes in subunit mRNA transcription or receptor half-life. The upregulation was not dependent on agonist/antagonist properties of the drugs, and did not concern muscarinic or serotonin receptors. Whole-cell patch clamp analysis of CC4-treated cells demonstrated larger nicotine-evoked inward currents with augmented sensitivity to the blockers alpha-conotoxin MII or methyllycaconitine. In conclusion, chronic treatment with CC4 increased the number of nAChRs containing beta2 and alpha7 subunits on the plasma membrane, where they were functionally active. In the case of beta2-containing receptors, we propose that CC4, by binding to intracellular receptors, triggered a conformational reorganisation of intracellular subunits that stimulated preferential assembly and membrane-directed trafficking of beta2-containing receptor subtypes..
Collapse
Affiliation(s)
- Loredana Riganti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Cosetta Matteoni
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Andrea Nistri
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Annalisa Gaimarri
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Fabio Sparatore
- Department of Pharmaceutical Science, University of Genoa, Genoa, Italy
| | | | - Francesco Clementi
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Cecilia Gotti
- CNR, Institute of Neuroscience, Cellular and Molecular Pharmacology, Department of Medical Pharmacology and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
- Author for correspondence:
| |
Collapse
|
12
|
Craig PJ, Bose S, Zwart R, Beattie RE, Folly EA, Johnson LR, Bell E, Evans NM, Benedetti G, Pearson KH, McPhie GI, Volsen SG, Millar NS, Sher E, Broad LM. Stable expression and characterisation of a human alpha 7 nicotinic subunit chimera: a tool for functional high-throughput screening. Eur J Pharmacol 2005; 502:31-40. [PMID: 15464087 DOI: 10.1016/j.ejphar.2004.08.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 08/09/2004] [Accepted: 08/19/2004] [Indexed: 11/23/2022]
Abstract
A chimera comprising the N-terminal region of the human alpha7 nicotinic acetylcholine receptor, fused to the transmembrane/C-terminal domains of the mouse serotonin 5-HT3 receptor, was constructed. Injection of the chimera cDNA into Xenopus oocytes, or transient transfection in human embryonic kidney (HEK-293) cells, resulted in the expression of functional channels that were sensitive to nicotinic acetylcholine, but not serotonin receptor ligands. In both systems, the responses obtained from chimeric receptors inactivated more slowly than those recorded following activation of wild-type alpha7 receptors. A stable HEK-293 cell line expressing the human alpha7/mouse 5-HT3 chimera was established, which showed that the chimera displayed a similar pharmacological profile to wild-type alpha7 receptors. Use of this chimera in high-throughput screening may enable the identification of novel pharmacological agents that will help to define further the role of alpha7 nicotinic receptors in physiology and disease.
Collapse
Affiliation(s)
- Peter J Craig
- Eli Lilly and Company Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Williams ME, Burton B, Urrutia A, Shcherbatko A, Chavez-Noriega LE, Cohen CJ, Aiyar J. Ric-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells. J Biol Chem 2004; 280:1257-63. [PMID: 15504725 DOI: 10.1074/jbc.m410039200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of functional, recombinant alpha7 nicotinic acetylcholine receptors in several mammalian cell types, including HEK293 cells, has been problematic. We have isolated the recently described human ric-3 cDNA and co-expressed it in Xenopus oocytes and HEK293 cells with the human nicotinic acetylcholine receptor alpha7 subunit. In addition to confirming the previously reported effect on alpha7 receptor expression in Xenopus oocytes we demonstrate that ric-3 promotes the formation of functional alpha7 receptors in mammalian cells, as determined by whole cell patch clamp recording and surface alpha-bungarotoxin binding. Upon application of 1 mm nicotine, currents were undetectable in HEK293 cells expressing only the alpha7 subunit. In contrast, co-expression of alpha7 and ric-3 cDNAs resulted in currents that averaged 42 pA/pF with kinetics similar to those observed in cells expressing endogenous alpha7 receptors. Immunoprecipitation studies demonstrate that alpha7 and ric-3 proteins co-associate. Additionally, cell surface labeling with biotin revealed the presence of alpha7 protein on the plasma membrane of cells lacking ric-3, but surface alpha-bungarotoxin staining was only observed in cells co-expressing ric-3. Thus, ric-3 appears to be necessary for proper folding and/or assembly of alpha7 receptors in HEK293 cells.
Collapse
Affiliation(s)
- Mark E Williams
- Merck Research Laboratories, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|