1
|
Wang P, Marsh EL, Kruger G, Lorenz A, Schachtman DP. Belowground microbial communities respond to water deficit and are shaped by decades of maize hybrid breeding. Environ Microbiol 2019; 22:889-904. [DOI: 10.1111/1462-2920.14701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Peng Wang
- Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 USA
| | - Ellen L. Marsh
- Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 USA
| | - Greg Kruger
- Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 USA
| | - Aaron Lorenz
- Department of Agronomy and Plant Genetics University of Minnesota St. Paul MN 55108
| | - Daniel P. Schachtman
- Department of Agronomy and Horticulture University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
2
|
Braker G, Conrad R. Diversity, structure, and size of N(2)O-producing microbial communities in soils--what matters for their functioning? ADVANCES IN APPLIED MICROBIOLOGY 2016; 75:33-70. [PMID: 21807245 DOI: 10.1016/b978-0-12-387046-9.00002-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nitrous oxide (N(2)O) is mainly generated via nitrification and denitrification processes in soils and subsequently emitted into the atmosphere where it causes well-known radiative effects. How nitrification and denitrification are affected by proximal and distal controls has been studied extensively in the past. The importance of the underlying microbial communities, however, has been acknowledged only recently. Particularly, the application of molecular methods to study nitrifiers and denitrifiers directly in their habitats enabled addressing how environmental factors influence the diversity, community composition, and size of these functional groups in soils and whether this is of relevance for their functioning and N(2)O production. In this review, we summarize the current knowledge on community-function interrelationships. Aerobic nitrification (ammonia oxidation) and anaerobic denitrification are clearly under different controls. While N(2)O is an obligatory intermediate in denitrification, its production during ammonia oxidation depends on whether nitrite, the end product, is further reduced. Moreover, individual strains vary strongly in their responses to environmental cues, and so does N(2)O production. We therefore conclude that size and structure of both functional groups are relevant with regard to production and emission of N(2)O from soils. Diversity affects on function, however, are much more difficult to assess, as it is not resolved as yet how individual nitrification or denitrification genotypes are related to N(2)O production. More research is needed for further insights into the relation of microbial communities to ecosystem functions, for instance, how the actively nitrifying or denitrifying part of the community may be related to N(2)O emission.
Collapse
Affiliation(s)
- Gesche Braker
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg, Germany.
| | | |
Collapse
|
3
|
Zhao D, Luo J, Wang J, Huang R, Guo K, Li Y, Wu QL. The influence of land use on the abundance and diversity of ammonia oxidizers. Curr Microbiol 2014; 70:282-9. [PMID: 25331793 DOI: 10.1007/s00284-014-0714-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/06/2014] [Indexed: 11/30/2022]
Abstract
Nitrification plays a significant role in soil nitrogen cycling, a process in which the first step can be catalyzed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). In this study, six soil samples with distinct land-use regimes (forestland soil, paddy soil, wheat-planted soil, fruit-planted soil, grassland soil, and rape-planted soil) were collected from Chuzhou city in the Anhui province to elucidate the effects of land use on the abundance and diversity of AOA and AOB. The abundance of the archaeal amoA gene ranged from 2.12 × 10(4) copies per gram of dry soil to 2.57 × 10(5) copies per gram of dry soil, while the abundance of the bacterial amoA gene ranged from 5.58 × 10(4) copies per gram of dry soil to 1.59 × 10(8) copies per gram of dry soil. The grassland and the rape-planted soil samples maintained the highest abundance of the bacterial and archaeal amoA genes, respectively. The abundance of the archaeal amoA gene was positively correlated with the pH (P < 0.05). The ammonia concentrations exhibited a significantly positive relation with the abundance of the bacterial amoA gene (P < 0.01) and the number of OTUs of AOB (P < 0.05). The community composition of AOB was more sensitive to the land-use regimes than that of AOA. The data obtained in this study may be useful to better understand the nitrification process in soils with different land-use regimes.
Collapse
Affiliation(s)
- Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China,
| | | | | | | | | | | | | |
Collapse
|
4
|
Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci U S A 2012; 109:14058-62. [PMID: 22891306 DOI: 10.1073/pnas.1202319109] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global change is challenging plant and animal populations with novel environmental conditions, including increased atmospheric CO(2) concentrations, warmer temperatures, and altered precipitation regimes. In some cases, contemporary or "rapid" evolution can ameliorate the effects of global change. However, the direction and magnitude of evolutionary responses may be contingent upon interactions with other community members that also are experiencing novel environmental conditions. Here, we examine plant adaptation to drought stress in a multigeneration experiment that manipulated aboveground-belowground feedbacks between plants and soil microbial communities. Although drought stress reduced plant growth and accelerated plant phenologies, surprisingly, plant evolutionary responses to drought were relatively weak. In contrast, plant fitness in both drought and nondrought environments was linked strongly to the rapid responses of soil microbial community structure to moisture manipulations. Specifically, plants were most fit when their contemporary environmental conditions (wet vs. dry soil) matched the historical environmental conditions (wet vs. dry soil) of their associated microbial community. Together, our findings suggest that, when faced with environmental change, plants may not be limited to "adapt or migrate" strategies; instead, they also may benefit from association with interacting species, especially diverse soil microbial communities, that respond rapidly to environmental change.
Collapse
|
5
|
Zhalnina K, de Quadros PD, Camargo FAO, Triplett EW. Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 2012; 3:210. [PMID: 22715335 PMCID: PMC3375578 DOI: 10.3389/fmicb.2012.00210] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/22/2012] [Indexed: 01/24/2023] Open
Abstract
Soil ammonia-oxidizing archaea (AOA) are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. Nitrite produced by AOA and further oxidized to nitrate can cause nitrogen loss from soils, surface and groundwater contamination, and water eutrophication. The AOA discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.
Collapse
Affiliation(s)
- Kateryna Zhalnina
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
6
|
Lage MD, Reed HE, Weihe C, Crain CM, Martiny JBH. Nitrogen and phosphorus enrichment alter the composition of ammonia-oxidizing bacteria in salt marsh sediments. ISME JOURNAL 2010; 4:933-44. [DOI: 10.1038/ismej.2010.10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Fierer N, Carney KM, Horner-Devine MC, Megonigal JP. The biogeography of ammonia-oxidizing bacterial communities in soil. MICROBIAL ECOLOGY 2009; 58:435-45. [PMID: 19352770 DOI: 10.1007/s00248-009-9517-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/21/2009] [Indexed: 05/10/2023]
Abstract
Although ammonia-oxidizing bacteria (AOB) are likely to play a key role in the soil nitrogen cycle, we have only a limited understanding of how the diversity and composition of soil AOB communities change across ecosystem types. We examined 23 soils collected from across North America and used sequence-based analyses to compare the AOB communities in each of the distinct soils. Using 97% 16S rRNA sequence similarity groups, we identified only 24 unique AOB phylotypes across all of the soils sampled. The majority of the sequences collected were in the Nitrosospira lineages (representing 80% of all the sequences collected), and AOB belonging to Nitrosospira cluster 3 were particularly common in our clone libraries and ubiquitous across the soil types. Community composition was highly variable across the collected soils, and similar ecosystem types did not always harbor similar AOB communities. We did not find any significant correlations between AOB community composition and measures of N availability. From the suite of environmental variables measured, we found the strongest correlation between temperature and AOB community composition; soils exposed to similar mean annual temperatures tended to have similar AOB communities. This finding is consistent with previous studies and suggests that temperature selects for specific AOB lineages. Given that distinct AOB taxa are likely to have unique functional attributes, the biogeographical patterns exhibited by soil AOB may be directly relevant to understanding soil nitrogen dynamics under changing environmental conditions.
Collapse
Affiliation(s)
- Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
8
|
Water stress impacts on bacterial carbon monoxide oxidation on recent volcanic deposits. ISME JOURNAL 2009; 3:1325-34. [PMID: 19641536 DOI: 10.1038/ismej.2009.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Water availability oscillates dramatically on young volcanic deposits, and may control the distribution and activity of microbes during early stages of biological succession. Carbon monoxide (CO)-oxidizing bacteria are among the pioneering colonists on volcanic deposits and are subjected to these water stresses. We report here the effects of water potential on CO-oxidizing bacteria in unvegetated (bare) and vegetated (canopy) sites on a 1959 volcanic deposit on Kilauea Volcano (Hawai'i). Time course measurements of water potential showed that average water potentials in the surface layer (0-1 cm) of canopy soil remained between -0.1 and 0 MPa, whereas dramatic diurnal oscillations (for example, between -60 and 0 MPa) occur in bare site surface cinders. During a moderate drying event in situ (-1.7 to 0 MPa), atmospheric CO consumption by intact bare site cores decreased 2.7-fold. For bare and canopy surface samples, maximum potential CO oxidation rates decreased 40 and 60%, respectively, when water potentials were lowered from 0 to -1.5 MPa in the laboratory. These observations indicated that CO oxidation is moderately sensitive to changes in water potential. Additional analyses showed that CO oxidation resumes within a few hours of rehydration, even after desiccation at -150 MPa for 63 days. Samples from both sites exposed to multiple cycles of drying and rewetting (-80 to 0 MPa), lost significant activity after the first cycle, but not after subsequent cycles. Similar responses of CO oxidation in both sites suggested that active CO-oxidizing communities in bare and canopy sites do not express differential adaptations to water stress.
Collapse
|
9
|
Adair KL, Schwartz E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. MICROBIAL ECOLOGY 2008; 56:420-426. [PMID: 18204798 DOI: 10.1007/s00248-007-9360-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 12/10/2007] [Accepted: 12/17/2007] [Indexed: 05/25/2023]
Abstract
Autotrophic ammonia-oxidizing communities, which are responsible for the rate-limiting step of nitrification in most soils, have not been studied extensively in semiarid ecosystems. Abundances of soil archaeal and bacterial amoA were measured with real-time polymerase chain reaction along an elevation gradient in northern Arizona. Archaeal amoA was the predominant form of amoA at all sites; however, ratios of archaeal to bacterial amoA ranged from 17 to more than 1,600. Although size of ammonia-oxidizing bacteria populations was correlated with precipitation, temperature, percent sand, and soil C/N, there were no significant relationships between ammonia-oxidizing archaea populations and any of the environmental parameters evaluated in this study. Our results suggest that in these soils, archaea may be the primary ammonia oxidizers, and that ammonia-oxidizing archaea and ammonia-oxidizing bacteria occupy different niches.
Collapse
Affiliation(s)
- Karen L Adair
- Department of Biological Sciences, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011-5640, USA.
| | | |
Collapse
|
10
|
Schmidt CS, Hultman KA, Robinson D, Killham K, Prosser JI. PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition. FEMS Microbiol Ecol 2007; 61:305-16. [PMID: 17573939 DOI: 10.1111/j.1574-6941.2007.00335.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Communities of ammonia-oxidizing bacteria (AOB) were characterized in two acidic soil sites experimentally subjected to varying levels of nitrogen and sulphur deposition. The sites were an acidic spruce forest soil in Deepsyke, Southern Scotland, with low background deposition, and a nitrogen-saturated upland grass heath in Pwllpeiran, North Wales. Betaproteobacterial ammonia-oxidizer 16S rRNA and ammonia monooxygenase (amoA) genes were analysed by cloning, sequencing and denaturing gradient gel electrophoresis (DGGE). DGGE profiles of amoA and 16S rRNA gene fragments from Deepsyke soil in 2002 indicated no effect of nitrogen deposition on AOB communities, which contained both Nitrosomonas europaea and Nitrosospira. In 2003, only Nitrosospira could be detected, and no amoA sequences could be retrieved. These results indicate a decrease in the relative abundance of AOB from the year 2002 to 2003 in Deepsyke soil, which may be the result of the exceptionally low rainfall in spring 2003. Nitrosospira-related sequences from Deepsyke soil grouped in all clusters, including cluster 1, which typically contains only sequences from marine environments. In Pwllpeiran soil, 16S rRNA gene libraries were dominated by nonammonia oxidizers and no amoA sequences were detectable. This indicates that autotrophic AOB play only a minor role in these soils even at high nitrogen deposition.
Collapse
|
11
|
Avrahami S, Bohannan BJM. Response of Nitrosospira sp. strain AF-like ammonia oxidizers to changes in temperature, soil moisture content, and fertilizer concentration. Appl Environ Microbiol 2006; 73:1166-73. [PMID: 17158615 PMCID: PMC1828661 DOI: 10.1128/aem.01803-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very little is known regarding the ecology of Nitrosospira sp. strain AF-like bacteria, a unique group of ammonia oxidizers within the Betaproteobacteria. We studied the response of Nitrosospira sp. strain AF-like ammonia oxidizers to changing environmental conditions by applying molecular methods and physiological measurements to Californian grassland soil manipulated in the laboratory. This soil is naturally high in Nitrosospira sp. strain AF-like bacteria relative to the much-better-studied Nitrosospira multiformis-like ammonia-oxidizing bacteria. Increases in temperature, soil moisture, and fertilizer interacted to reduce the relative abundance of Nitrosospira sp. strain AF-like bacteria, although they remained numerically dominant. The overall abundance of ammonia-oxidizing bacteria increased with increasing soil moisture and decreased with increasing temperature. Potential nitrification activity was altered by interactions among temperature, soil moisture, and fertilizer, with activity tending to be higher when soil moisture and temperature were increased. The increase in potential nitrification activity with increased temperature was surprising, given that the overall abundance of ammonia-oxidizing bacteria decreased significantly under these conditions. This observation suggests that (i) Nitrosospira sp. strain AF-like bacteria may respond to increased temperature with an increase in activity, despite a decrease in abundance, or (ii) that potential nitrification activity in these soils may be due to organisms other than bacteria (e.g., archaeal ammonia oxidizers), at least under conditions of increased temperature.
Collapse
Affiliation(s)
- Sharon Avrahami
- Department of Biological Sciences, Stanford University, CA 94305, USA.
| | | |
Collapse
|
12
|
Chu H, Fujii T, Morimoto S, Lin X, Yagi K, Hu J, Zhang J. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microbiol 2006; 73:485-91. [PMID: 17098920 PMCID: PMC1796994 DOI: 10.1128/aem.01536-06] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the alpha subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.
Collapse
Affiliation(s)
- Haiyan Chu
- National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba 305-8604, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Avrahami S, Conrad R. Cold-temperate climate: a factor for selection of ammonia oxidizers in upland soil? Can J Microbiol 2006; 51:709-14. [PMID: 16234869 DOI: 10.1139/w05-045] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ammonia-oxidizing bacteria in various upland soils show a rather large diversity with respect to their amoA genes (coding for a subunit of the ammonium monooxygenase). It is known that the community structure of ammonia-oxidizing bacteria in upland soils is influenced by different selective factors, such as pH, gravimetric water content, fertilizer treatment, and temperature. The question, from an ecological point of view, is whether a particular ecophysiological factor, such as temperature, could select for a particular community structure of ammonia oxidizers in upland soils that would be represented by distinct clusters of the amoA gene (AmoA cluster). Studying the literature, including recent publications and our own unpublished results, we found that AmoA clusters 3a, 3b, and 9-12 apparently exhibited no preference for either subtropical/tropical soils (i.e., warm regions) or temperate cold soils. However, AmoA clusters 1 and 4 (and perhaps cluster 2) seem to occur predominantly in soils from cold-temperate regions. Here we review the evidence for a temperature effect on the global distribution of amoA genes in warm- and cold-temperate soils.
Collapse
Affiliation(s)
- Sharon Avrahami
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | | |
Collapse
|
14
|
Jordan FL, Cantera JJL, Fenn ME, Stein LY. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem. Appl Environ Microbiol 2005; 71:197-206. [PMID: 15640188 PMCID: PMC544198 DOI: 10.1128/aem.71.1.197-206.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deposition rates of atmospheric nitrogenous pollutants to forests in the San Bernardino Mountains range east of Los Angeles, California, are the highest reported in North America. Acidic soils from the west end of the range are N-saturated and have elevated rates of N-mineralization, nitrification, and nitrate leaching. We assessed the impact of this heavy nitrogen load on autotrophic ammonia-oxidizing communities by investigating their composition, abundance, and activity. Analysis of 177 cloned beta-Proteobacteria ammonia oxidizer 16S rRNA genes from highly to moderately N-impacted soils revealed similar levels of species composition; all of the soils supported the previously characterized Nitrosospira clusters 2, 3, and 4. Ammonia oxidizer abundance measured by quantitative PCR was also similar among the soils. However, rates of potential nitrification activity were greater for N-saturated soils than for soils collected from a less impacted site, but autotrophic (i.e., acetylene-sensitive) activity was low in all soils examined. N-saturated soils incubated for 30 days with ammonium accumulated additional soluble ammonium, whereas less-N-impacted soils had a net loss of ammonium. Lastly, nitrite production by cultivated Nitrosospira multiformis, an autotrophic ammonia-oxidizing bacterium adapted to relatively high ammonium concentrations, was significantly inhibited in pH-controlled slurries of sterilized soils amended with ammonium despite the maintenance of optimal ammonia-oxidizing conditions. Together, these results showed that factors other than autotrophic ammonia oxidizers contributed to high nitrification rates in these N-impacted forest soils and, unlike many other environments, differences in nitrogen content and soil pH did not favor particular autotrophic ammonia oxidizer groups.
Collapse
Affiliation(s)
- Fiona L Jordan
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
15
|
Cébron A, Coci M, Garnier J, Laanbroek HJ. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Appl Environ Microbiol 2005; 70:6726-37. [PMID: 15528539 PMCID: PMC525213 DOI: 10.1128/aem.70.11.6726-6737.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Seine River is strongly affected by the effluents from the Acheres wastewater treatment plant (WWTP) downstream of the city of Paris. We have shown that the effluents introduce large amounts of ammonia and inoculate the receiving medium with nitrifying bacteria. The aim of the present study was to investigate the diversity of the ammonia-oxidizing bacterial population by identifying autochthonous bacteria from upstream and/or allochthonous ammonia-oxidizing bacteria from the WWTP effluents. Measurements of potential nitrifying activity, competitive PCR, and denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA fragments specific to ammonia-oxidizing bacteria (AOB) were used to explore the succession and shifts of the ammonia-oxidizing community in the lower Seine River and to analyze the temporal and spatial functioning of the system at several different sampling dates. A major revelation was the stability of the patterns. The CTO primers used in this study (G. A. Kowalchuk, J. R. Stephen, W. D. Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp, Appl. Environ. Microbiol. 63:1489-1497, 1997) were shown not to be completely specific to AOB of the beta subclass of Proteobacteria. We further demonstrated that when DGGE patterns are interpreted, all the different bands must be sequenced, as one major DGGE band proved to be affiliated with a group of non-AOB in the beta subclass of Proteobacteria. The majority of AOB (75 to 90%) present in the lower Seine river downstream of the effluent output belong to lineage 6a, represented by Nitrosomonas oligotropha- and Nitrosomonas ureae-like bacteria. This dominant lineage was represented by three bands on the DGGE gel. The major lineage-6a AOB species, introduced by the WWTP effluents, survived and might have grown in the receiving medium far downstream, in the estuary; it represented about 40% of the whole AOB population. The other two species belonging to lineage 6a seem to be autochthonous bacteria. One of them developed a few kilometers downstream of the WWTP effluent input in an ammonia-enriched environment, and the other appeared in the freshwater part of the estuary and was apparently more adapted to estuarine conditions, i.e., an increase in the amount of suspended matter, a low ammonia concentration, and high turnover of organic matter. The rest of the AOB population was represented in equal proportions by Nitrosospira- and Nitrosococcus mobilis-like species.
Collapse
Affiliation(s)
- Aurélie Cébron
- UMR Sisyphe 7619, Université Pierre et Marie Curie--Paris 6, Paris, France.
| | | | | | | |
Collapse
|
16
|
Nejidat A. Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils. FEMS Microbiol Ecol 2004; 52:21-9. [PMID: 16329889 DOI: 10.1016/j.femsec.2004.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/16/2004] [Accepted: 10/12/2004] [Indexed: 11/25/2022] Open
Abstract
Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.
Collapse
Affiliation(s)
- Ali Nejidat
- Department of Environmental Hydrology and Microbiology, Institute for Water Sciences and Technologies, The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel.
| |
Collapse
|
17
|
Horz HP, Barbrook A, Field CB, Bohannan BJM. Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci U S A 2004; 101:15136-41. [PMID: 15469911 PMCID: PMC524064 DOI: 10.1073/pnas.0406616101] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies have demonstrated that multiple co-occurring global changes can alter the abundance, diversity, and productivity of plant communities. Below ground processes, often mediated by soil microorganisms, are central to the response of these communities to global change. Very little is known, however, about the effects of multiple global changes on microbial communities. We examined the response of ammonia-oxidizing bacteria (AOB), microorganisms that mediate the transformation of ammonium into nitrite, to simultaneous increases in atmospheric CO2, precipitation, temperature, and nitrogen deposition, manipulated on the ecosystem level in a California grassland. Both the community structure and abundance of AOB responded to these simulated global changes. Increased nitrogen deposition significantly altered the structure of the ammonia-oxidizing community, consistently shifting the community toward dominance by bacteria most closely related to Nitrosospira sp. 2. This shift was most pronounced when temperature and precipitation were not increased. Total abundance of AOB significantly decreased in response to increased atmospheric CO2. This decrease was most pronounced when precipitation was also increased. Shifts in community composition were associated with increases in nitrification, but changes in abundance were not. These results demonstrate that microbial communities can be consistently altered by global changes and that these changes can have implications for ecosystem function.
Collapse
Affiliation(s)
- Hans-Peter Horz
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
18
|
Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. Physiological and community responses of established grassland bacterial populations to water stress. Appl Environ Microbiol 2004; 69:6961-8. [PMID: 14660337 PMCID: PMC309888 DOI: 10.1128/aem.69.12.6961-6968.2003] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of water stress upon the diversity and culturable activity of bacterial communities in the rhizosphere of an established upland grassland soil have been investigated. Intact monoliths were subjected to different watering regimens over a 2-month period to study community adaptation to moisture limitation and subsequent response to stress alleviation following rewetting. Genetic diversity was analyzed with 16S-based denaturing gradient gel electrophoresis (DGGE) of total soil-extracted DNA (rRNA genes) and RNA (rRNA transcripts) in an attempt to discriminate between total and active communities. Physiological response was monitored by plate counts, total counts, and BIOLOG-GN2 substrate utilization analyses. Controlled soil drying decreased the total number of CFU on all the media tested and also decreased the substrate utilization response. Following rewetting of dried soil, culture-based analyses indicated physiological recovery of the microbial population by the end of the experiment. In contrast, DGGE analyses of community 16S rRNA genes, rRNA transcripts and cultured communities did not reveal any changes relating to the moisture regimens, despite the observed physiological effects. We conclude that the imposed moisture regimen modulated the physiological status of the bacterial community and that bacterial communities in this soil are resistant to water stress. Further, we highlight the need for a reexamination of rRNA transcript-based molecular profiling techniques as a means of describing the active component of soil bacterial communities.
Collapse
Affiliation(s)
- Robert I Griffiths
- Molecular Microbial Ecology Laboratory, CEH-Oxford, Oxford OX1 3SR, United Kingdom
| | | | | | | |
Collapse
|
19
|
Avrahami S, Conrad R. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl Environ Microbiol 2004; 69:6152-64. [PMID: 14532075 PMCID: PMC201211 DOI: 10.1128/aem.69.10.6152-6164.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of temperature on the community structure of ammonia-oxidizing bacteria was investigated in three different meadow soils. Two of the soils (OMS and GMS) were acidic (pH 5.0 to 5.8) and from sites in Germany with low annual mean temperature (about 10 degrees C), while KMS soil was slightly alkaline (pH 7.9) and from a site in Israel with a high annual mean temperature (about 22 degrees C). The soils were fertilized and incubated for up to 20 weeks in a moist state and as a buffered (pH 7) slurry amended with urea at different incubation temperatures (4 to 37 degrees C). OMS soil was also incubated with less fertilizer than the other soils. The community structure of ammonia oxidizers was analyzed before and after incubation by denaturing gradient gel electrophoresis (DGGE) of the amoA gene, which codes for the alpha subunit of ammonia monooxygenase. All amoA gene sequences found belonged to the genus Nitrosospira. The analysis showed community change due to temperature both in moist soil and in the soil slurry. Two patterns of community change were observed. One pattern was a change between the different Nitrosospira clusters, which was observed in moist soil and slurry incubations of GMS and OMS. Nitrosospira AmoA cluster 1 was mainly detected below 30 degrees C, while Nitrosospira cluster 4 was predominant at 25 degrees C. Nitrosospira clusters 3a, 3b, and 9 dominated at 30 degrees C. The second pattern, observed in KMS, showed a community shift predominantly within a single Nitrosospira cluster. The sequences of the individual DGGE bands that exhibited different trends with temperature belonged almost exclusively to Nitrosospira cluster 3a. We conclude that ammonia oxidizer populations are influenced by temperature. In addition, we confirmed previous observations that N fertilizer also influences the community structure of ammonia oxidizers. Thus, Nitrosospira cluster 1 was absent in OMS soil treated with less fertilizer, while Nitrosospira cluster 9 was only found in the sample given less fertilizer.
Collapse
Affiliation(s)
- Sharon Avrahami
- Max-Planck-Institut für Terrestrische Mikrobiologie, 35043 Marburg, Germany
| | | |
Collapse
|
20
|
Effects of soil improvement treatments on bacterial community structure and soil processes in an upland grassland soil. FEMS Microbiol Ecol 2003; 46:11-22. [DOI: 10.1016/s0168-6496(03)00160-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Avrahami S, Liesack W, Conrad R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ Microbiol 2003; 5:691-705. [PMID: 12871236 DOI: 10.1046/j.1462-2920.2003.00457.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effect of temperature on the activity of soil ammonia oxidizers caused by changes in the availability of ammonium and in the microbial community structure. Both short (5 days) and long (6.5, 16 and 20 weeks) incubation of an agricultural soil resulted in a decrease in ammonium concentration that was more pronounced at temperatures between 10 and 25 degrees C than at either 4 degrees C or 30-37 degrees C. Consistently, potential nitrification was higher between 10 and 25 degrees C than at either 4 degrees C or 37 degrees C. However, as long as ammonium was not limiting, release rates of N2O increased monotonously between 4 and 37 degrees C after short-term temperature adaptation, with nitrification accounting for about 35-50% of the N2O production between 4 and 25 degrees C. In order to see whether temperature may also affect the community structure of ammonia oxidizers, we studied moist soil during long incubation at low and high concentrations of commercial fertilizer. The soil was also incubated in buffered (pH 7) slurry amended with urea. Communities of ammonia oxidizers were assayed by denaturant gradient gel electrophoresis (DGGE) of the amoA gene coding for the alpha subunit of ammonia monooxygenase. We found that a polymerase chain reaction (PCR) system using a non-degenerated reverse primer (amoAR1) gave the best results. Community shifts occurred in all soil treatments after 16 weeks of incubation. The community shifts were obviously influenced by the different fertilizer treatments, indicating that ammonium was a selective factor for different ammonia oxidizer populations. Temperature was also a selective factor, in particular as community shifts were also observed in the soil slurries, in which ammonium concentrations and pH were better controlled. Cloning and sequencing of selected DGGE bands indicated that amoA sequences belonging to Nitrosospira cluster 1 were dominant at low temperatures (4-10 degrees C), but were absent after long incubation at low fertilizer treatment. Sequences of Nitrosospira cluster 9 could only be detected at low ammonium concentrations, whereas those of Nitrosospira cluster 3 were found at most ammonium concentrations and temperatures, although individual clones of this cluster exhibited trends with temperature. Obviously, ammonia oxidizers are able to adapt to soil conditions by changes in the community structure if sufficient time (several weeks) is available.
Collapse
Affiliation(s)
- Sharon Avrahami
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str., 35043 Marburg, Germany
| | | | | |
Collapse
|
22
|
Ivanova IA, Stephen JR, Chang YJ, Brüggemann J, Long PE, McKinley JP, Kowalchuk GA, White DC, Macnaughton SJ. A survey of 16S rRNA and amoA genes related to autotrophic ammonia-oxidizing bacteria of the beta-subdivision of the class proteobacteria in contaminated groundwater. Can J Microbiol 2000; 46:1012-20. [PMID: 11109489 DOI: 10.1139/w00-099] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the size and structure of autotrophic ammonia oxidizer (AAO) communities in the groundwater of a contamination plume originating from a mill-tailings disposal site. The site has high levels of dissolved N from anthropogenic sources, and exhibited wide variations in the concentrations of NO3- and NH3 + NH4+. Community structures were examined by PCR-DGGE targeting 16S rDNA with band excision and sequence analysis, and by analysis of amoA fragment clone libraries. AAO population sizes were estimated by competitive PCR targeting the gene amoA, and correlated significantly with nitrate concentration. Most samples revealed novel diversity in AAO 16S rDNA and amoA gene sequences. Both 16S rDNA and amoA analyses suggested that all samples were dominated by Nitrosomonas sp., Nitrosospira sp. being detected in only 3 of 15 samples. This study indicated numerical dominance of Nitrosomonas over Nitrosospira in groundwater, and suggests that groundwater ammonia oxidizers are more similar to those dominating freshwater sediments than bulk soil.
Collapse
Affiliation(s)
- I A Ivanova
- University of Tennessee, Center for Environmental Biotechnology, Knoxville 37923, USA
| | | | | | | | | | | | | | | | | |
Collapse
|