1
|
Grenfell AW, Intile PJ, McFarlane JA, Leung DC, Abdalla K, Wold MC, Kees ED, Gralnick JA. The Outer Membrane Cytochrome OmcA Is Essential for Infection of Shewanella oneidensis by a Zebrafish-Associated Bacteriophage. J Bacteriol 2023; 205:e0046922. [PMID: 37227287 PMCID: PMC10294696 DOI: 10.1128/jb.00469-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
The microbiota-the mixture of microorganisms in the intestinal tract of animals-plays an important role in host biology. Bacteriophages are a prominent, though often overlooked, component of the microbiota. The mechanisms that phage use to infect susceptible cells associated with animal hosts, and the broader role they could play in determining the substituents of the microbiota, are poorly understood. In this study, we isolated a zebrafish-associated bacteriophage, which we named Shewanella phage FishSpeaker. This phage infects Shewanella oneidensis strain MR-1, which cannot colonize zebrafish, but it is unable to infect Shewanella xiamenensis strain FH-1, a strain isolated from the zebrafish gut. Our data suggest that FishSpeaker uses the outer membrane decaheme cytochrome OmcA, which is an accessory component of the extracellular electron transfer (EET) pathway in S. oneidensis, as well as the flagellum to recognize and infect susceptible cells. In a zebrafish colony that lacks detectable FishSpeaker, we found that most Shewanella spp. are sensitive to infection and that some strains are resistant to infection. Our results suggest that phage could act as a selectivity filter for zebrafish-associated Shewanella and show that the EET machinery can be targeted by phage in the environment. IMPORTANCE Phage exert selective pressure on bacteria that influences and shapes the composition of microbial populations. However, there is a lack of native, experimentally tractable systems for studying how phage influence microbial population dynamics in complex communities. Here, we show that a zebrafish-associated phage requires both the outer membrane-associated extracellular electron transfer protein OmcA and the flagellum to infect Shewanella oneidensis strain MR-1. Our results suggest that the newly discovered phage-FishSpeaker-could exert selective pressure that restricts which Shewanella spp. colonize zebrafish. Moreover, the requirement of OmcA for infection by FishSpeaker suggests that the phage preferentially infects cells that are oxygen limited, a condition required for OmcA expression and an ecological feature of the zebrafish gut.
Collapse
Affiliation(s)
- Andrew W. Grenfell
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Peter J. Intile
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - John A. McFarlane
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Dani C. Leung
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Khalid Abdalla
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Michael C. Wold
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Eric D. Kees
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
2
|
Ma JF, Hou YN, Guo J, Sharif HMA, Huang C, Zhao J, Li H, Song Y, Lu C, Han Y, Zhang Y, Wang AJ. Rational design of biogenic Pd xAu y nanoparticles with enhanced catalytic performance for electrocatalysis and azo dyes degradation. ENVIRONMENTAL RESEARCH 2022; 204:112086. [PMID: 34562479 DOI: 10.1016/j.envres.2021.112086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The green biogenic PdAu nanoparticles (bio-PdAu NPs) exhibits remarkable catalytic performance in hydrogenation, which is highly desired. However, the catalytic principles and effectiveness of bio-PdxAuy NPs in response to various catalytic systems (electrocatalysis and suspension-catalysis) are unclear. Herein, a facile synthetic strategy for bio-PdxAuy NPs synthesis with controlled size and the catalytic principles for hydrogen evolution reaction (HER) and azo dye degradation is reported. In the biosynthetic process, the size and composition of the bio-PdxAuy NPs could be precisely controlled by predesigning the precursor mass ratio of Pd/Au, and the Au proportion showed a linear relationship with the size of NPs (R2 = 0.92). The obtained bio-PdxAuy NPs exhibit variable activity in electrocatalysis (HER) and suspension-catalysis (azo dye degradation). For electrocatalysis, the formation of conductive networks that facilitates the extracellular electron transfer is crucial. It was revealed that the bio-Pd2Au8 exhibited superior electrocatalytic performance in HER/toward hydrogen evolution, with a maximum current density of 1.65 mA cm-2, which was 1.54 times higher than that commercial Pd/C (1.07 mA cm-2). The high electrocatalytic activity was attributed to its appropriate size (81.38 ± 6.14 nm) and uniform distribution on the cell surface, which promoted the extracellular electron transfer by constructing a conductive network between catalyst and electrode. However, for suspension-catalysis, the size effect and synergistic effect of bimetallic NPs have a more prominent effect on the degradation of azo dyes. As the increase of Au proportion the particle size decreases, and the catalytic activity of bio-PdxAuy improved significantly. The response principles of bio-PdxAuy proposed in this study provide a reliable reference for the rational design of bio-based bimetallic catalysts with enhanced catalytic performance.
Collapse
Affiliation(s)
- Jin-Feng Ma
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China.
| | | | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianhai Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Haibo Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yuanyuan Song
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Caicai Lu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yi Han
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yousuo Zhang
- CCCC-TDC Harbour Construction Engineering Co., Ltd., Huanggu Dongheng street 8#, Tianjin, 300450, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide. Biosens Bioelectron 2019; 142:111571. [DOI: 10.1016/j.bios.2019.111571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022]
|
4
|
Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis. Appl Environ Microbiol 2019; 85:AEM.02115-18. [PMID: 30446562 DOI: 10.1128/aem.02115-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023] Open
Abstract
The metal-reducing gammaproteobacterium Shewanella oneidensis reduces iodate (IO3 -) as an anaerobic terminal electron acceptor. Microbial IO3 - electron transport pathways are postulated to terminate with nitrate (NO3 -) reductase, which reduces IO3 - as an alternative electron acceptor. Recent studies with S. oneidensis, however, have demonstrated that NO3 - reductase is not involved in IO3 - reduction. The main objective of the present study was to determine the metal reduction and protein secretion genes required for IO3 - reduction by Shewanella oneidensis with lactate, formate, or H2 as the electron donor. With all electron donors, the type I and type V protein secretion mutants retained wild-type IO3 - reduction activity, while the type II protein secretion mutant lacking the outer membrane secretin GspD was impaired in IO3 - reduction. Deletion mutants lacking the cyclic AMP receptor protein (CRP), cytochrome maturation permease CcmB, and inner membrane-tethered c-type cytochrome CymA were impaired in IO3 - reduction with all electron donors, while deletion mutants lacking c-type cytochrome MtrA and outer membrane β-barrel protein MtrB of the outer membrane MtrAB module were impaired in IO3 - reduction with only lactate as an electron donor. With all electron donors, mutants lacking the c-type cytochromes OmcA and MtrC of the metal-reducing extracellular electron conduit MtrCAB retained wild-type IO3 - reduction activity. These findings indicate that IO3 - reduction by S. oneidensis involves electron donor-dependent metal reduction and protein secretion pathway components, including the outer membrane MtrAB module and type II protein secretion of an unidentified IO3 - reductase to the S. oneidensis outer membrane.IMPORTANCE Microbial iodate (IO3 -) reduction is a major component in the biogeochemical cycling of iodine and the bioremediation of iodine-contaminated environments; however, the molecular mechanism of microbial IO3 - reduction is poorly understood. Results of the present study indicate that outer membrane (type II) protein secretion and metal reduction genes encoding the outer membrane MtrAB module of the extracellular electron conduit MtrCAB are required for IO3 - reduction by S. oneidensis On the other hand, the metal-reducing c-type cytochrome MtrC of the extracellular electron conduit is not required for IO3 - reduction by S. oneidensis These findings indicate that the IO3 - electron transport pathway terminates with an as yet unidentified IO3 - reductase that associates with the outer membrane MtrAB module to deliver electrons extracellularly to IO3.
Collapse
|
5
|
Choudhury P, Prasad Uday US, Bandyopadhyay TK, Ray RN, Bhunia B. Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review. Bioengineered 2017; 8:471-487. [PMID: 28453385 DOI: 10.1080/21655979.2016.1267883] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
There is an urgent need to find an environment friendly and sustainable technology for alternative energy due to rapid depletion of fossil fuel and industrialization. Microbial Fuel Cells (MFCs) have operational and functional advantages over the current technologies for energy generation from organic matter as it directly converts electricity from substrate at ambient temperature. However, MFCs are still unsuitable for high energy demands due to practical limitations. The overall performance of an MFC depends on microorganism, appropriate electrode materials, suitable MFC designs, and optimizing process parameters which would accelerate commercialization of this technology in near future. In this review, we put forth the recent developments on microorganism and electrode material that are critical for the generation of bioelectricity generation. This would give a comprehensive insight into the characteristics, options, modifications, and evaluations of these parameters and their effects on process development of MFCs.
Collapse
Affiliation(s)
- Payel Choudhury
- a Department of Electrical Engineering , National Institute of Technology , Agartala , India
| | | | | | - Rup Narayan Ray
- a Department of Electrical Engineering , National Institute of Technology , Agartala , India
| | - Biswanath Bhunia
- c Department of Bio Engineering , National Institute of Technology , Agartala , India
| |
Collapse
|
6
|
Aigle A, Bonin P, Iobbi-Nivol C, Méjean V, Michotey V. Physiological and transcriptional approaches reveal connection between nitrogen and manganese cycles in Shewanella algae C6G3. Sci Rep 2017; 7:44725. [PMID: 28317859 PMCID: PMC5357785 DOI: 10.1038/srep44725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
To explain anaerobic nitrite/nitrate production at the expense of ammonium mediated by manganese oxide (Mn(IV)) in sediment, nitrate and manganese respirations were investigated in a strain (Shewanella algae C6G3) presenting these features. In contrast to S. oneidensis MR-1, a biotic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during anaerobic growth with Mn(IV) under condition of limiting electron acceptor, concomitantly, with a higher electron donor stoichiometry than expected. This low and reproducible transitory accumulation is the result of production and consumption since the strain is able to dissimilative reduce nitrate into ammonium. Nitrite production in Mn(IV) condition is strengthened by comparative expression of the nitrate/nitrite reductase genes (napA, nrfA, nrfA-2), and rates of the nitrate/nitrite reductase activities under Mn(IV), nitrate or fumarate conditions. Compared with S. oneidensis MR-1, S. algae contains additional genes that encode nitrate and nitrite reductases (napA-α and nrfA-2) and an Outer Membrane Cytochrome (OMC)(mtrH). Different patterns of expression of the OMC genes (omcA, mtrF, mtrH and mtrC) were observed depending on the electron acceptor and growth phase. Only gene mtrF-2 (SO1659 homolog) was specifically expressed under the Mn(IV) condition. Nitrate and Mn(IV) respirations seem connected at the physiological and transcriptional levels.
Collapse
Affiliation(s)
- Axel Aigle
- Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO UMR 110, 13288, Marseille, France
| | - Patricia Bonin
- Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO UMR 110, 13288, Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, CNRS, BIP Bioénergétique et Ingénierie des Protéines UMR 7281, 13402, Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, CNRS, BIP Bioénergétique et Ingénierie des Protéines UMR 7281, 13402, Marseille, France
| | - Valérie Michotey
- Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO UMR 110, 13288, Marseille, France
| |
Collapse
|
7
|
Liu J, Zheng Y, Hong Z, Cai K, Zhao F, Han H. Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis. SCIENCE ADVANCES 2016; 2:e1600858. [PMID: 27704047 PMCID: PMC5045266 DOI: 10.1126/sciadv.1600858] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/18/2016] [Indexed: 05/04/2023]
Abstract
Biosynthesis based on the reducing capacity of electrochemically active bacteria is frequently used in the reduction of metal ions into nanoparticles as an eco-friendly way to recycle metal resources. However, those bionanoparticles cannot be used directly as electrocatalysts because of the poor conductivity of cell substrates. This problem was solved by a hydrothermal reaction, which also contributes to the heteroatom doping and alloying between Pd and Au. With the protection of graphene, the aggregation of nanoparticles was successfully avoided, and the porous structure was maintained, resulting in better electrocatalytic activity and durability than commercial Pd/C under both alkaline (CH3CH2OH, 6.15-fold of mass activity) and acidic (HCOOH, 6.58-fold of mass activity) conditions. The strategy developed in this work opens up a horizon into designing electrocatalysts through fully utilizing the abundant resources in nature.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zilan Hong
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Cai
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Corresponding author. (H.H.); (F.Z.)
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author. (H.H.); (F.Z.)
| |
Collapse
|
8
|
Kouzuma A, Kasai T, Hirose A, Watanabe K. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front Microbiol 2015; 6:609. [PMID: 26136738 PMCID: PMC4468914 DOI: 10.3389/fmicb.2015.00609] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/02/2015] [Indexed: 12/12/2022] Open
Abstract
Shewanella oneidensis MR-1 is a facultative anaerobe that respires using a variety of inorganic and organic compounds. MR-1 is also capable of utilizing extracellular solid materials, including anodes in microbial fuel cells (MFCs), as electron acceptors, thereby enabling electricity generation. As MFCs have the potential to generate electricity from biomass waste and wastewater, MR-1 has been extensively studied to identify the molecular systems that are involved in electricity generation in MFCs. These studies have demonstrated the importance of extracellular electron-transfer (EET) pathways that electrically connect the quinone pool in the cytoplasmic membrane to extracellular electron acceptors. Electricity generation is also dependent on intracellular catabolic pathways that oxidize electron donors, such as lactate, and regulatory systems that control the expression of genes encoding the components of catabolic and electron-transfer pathways. In addition, recent findings suggest that cell-surface polymers, e.g., exopolysaccharides, and secreted chemicals, which function as electron shuttles, are also involved in electricity generation. Despite these advances in our knowledge on the EET processes in MR-1, further efforts are necessary to fully understand the underlying intra- and extracellular molecular systems for electricity generation in MFCs. We suggest that investigating how MR-1 coordinates these systems to efficiently transfer electrons to electrodes and conserve electrochemical energy for cell proliferation is important for establishing the biological basis for MFCs.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Japan
| | - Takuya Kasai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Japan
| | - Atsumi Hirose
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Japan
| |
Collapse
|
9
|
Szeinbaum N, Burns JL, DiChristina TJ. Electron transport and protein secretion pathways involved in Mn(III) reduction by Shewanella oneidensis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:490-500. [PMID: 25646542 DOI: 10.1111/1758-2229.12173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Soluble Mn(III) represents an important yet overlooked oxidant in marine and freshwater systems. The molecular mechanism of microbial Mn(III) reduction, however, has yet to be elucidated. Extracellular reduction of insoluble Mn(IV) and Fe(III) oxides by the metal-reducing γ-proteobacterium Shewanella oneidensis involves inner (CymA) and outer (OmcA) membrane-associated c-type cytochromes, the extracellular electron conduit MtrCAB, and GspD, the secretin of type II protein secretion. CymA, MtrCAB and GspD mutants were unable to reduce Mn(III) and Mn(IV) with lactate, H2, or formate as electron donor. The OmcA mutant reduced Mn(III) and Mn(IV) at near wild-type rates with lactate and formate as electron donor. With H2 as electron donor, however, the OmcA mutant was unable to reduce Mn(III) but reduced Mn(IV) at wild-type rates. Analogous Fe(III) reduction rate analyses indicated that other electron carriers compensated for the absence of OmcA, CymA, MtrCAB and GspD during Fe(III) reduction in an electron donor-dependent fashion. Results of the present study demonstrate that the S. oneidensis electron transport and protein secretion components involved in extracellular electron transfer to external Mn(IV) and Fe(III) oxides are also required for electron transfer to Mn(III) and that OmcA may function as a dedicated component of an H2 oxidation-linked Mn(III) reduction system.
Collapse
|
10
|
Bücking C, Piepenbrock A, Kappler A, Gescher J. Outer-membrane cytochrome-independent reduction of extracellular electron acceptors in Shewanella oneidensis. Microbiology (Reading) 2012; 158:2144-2157. [DOI: 10.1099/mic.0.058404-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Clemens Bücking
- Institut für angewandte Biowissenschaften, Angewandte Biologie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Annette Piepenbrock
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Sigwartstrasse 10, D-72076 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Sigwartstrasse 10, D-72076 Tübingen, Germany
| | - Johannes Gescher
- Institut für angewandte Biowissenschaften, Angewandte Biologie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Identification and analysis of the Shewanella oneidensis major oxygen-independent coproporphyrinogen III oxidase gene. Anaerobe 2011; 17:501-5. [PMID: 21726654 DOI: 10.1016/j.anaerobe.2011.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 11/23/2022]
Abstract
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process.
Collapse
|
12
|
Brigé A, Motte B, Borloo J, Buysschaert G, Devreese B, Van Beeumen JJ. Bacterial decolorization of textile dyes is an extracellular process requiring a multicomponent electron transfer pathway. Microb Biotechnol 2011; 1:40-52. [PMID: 21261820 PMCID: PMC3864430 DOI: 10.1111/j.1751-7915.2007.00005.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many studies have reported microorganisms as efficient biocatalysts for colour removal of dye-containing industrial wastewaters. We present the first comprehensive study to identify all molecular components involved in decolorization by bacterial cells. Mutants from the model organism Shewanella oneidensis MR-1, generated by random transposon and targeted insertional mutagenesis, were screened for defects in decolorization of an oxazine and diazo dye. We demonstrate that decolorization is an extracellular reduction process requiring a multicomponent electron transfer pathway that consists of cytoplasmic membrane, periplasmic and outer membrane components. The presence of melanin, a redox-active molecule excreted by S. oneidensis, was shown to enhance the dye reduction rates. Menaquinones and the cytochrome CymA are the crucial cytoplasmic membrane components of the pathway, which then branches off via a network of periplasmic cytochromes to three outer membrane cytochromes. The key proteins of this network are MtrA and OmcB in the periplasm and outer membrane respectively. A model of the complete dye reduction pathway is proposed in which the dye molecules are reduced by the outer membrane cytochromes either directly or indirectly via melanin.
Collapse
Affiliation(s)
- Ann Brigé
- Department of Biochemistry, Physiology and Microbiology, Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
13
|
An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences. PLoS One 2010; 5:e13968. [PMID: 21103051 PMCID: PMC2980473 DOI: 10.1371/journal.pone.0013968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/24/2010] [Indexed: 01/08/2023] Open
Abstract
Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.
Collapse
|
14
|
Bücking C, Popp F, Kerzenmacher S, Gescher J. Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 2010; 306:144-51. [PMID: 20370837 DOI: 10.1111/j.1574-6968.2010.01949.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The formation of outer membrane (OM) cytochromes seems to be a key step in the evolution of dissimilatory iron-reducing bacteria. They are believed to be the endpoints of an extended respiratory chain to the surface of the cell that establishes the connection to insoluble electron acceptors such as iron or manganese oxides. The gammaproteobacterium Shewanella oneidensis MR-1 contains the genetic information for five putative OM cytochromes. In this study, the role and specificity of these proteins were investigated. All experiments were conducted using a markerless deletion mutant in all five OM cytochromes that was complemented via the expression of single, plasmid-encoded genes. MtrC and MtrF were shown to be potent reductases of chelated ferric iron, birnessite, and a carbon anode in a microbial fuel cell. OmcA-producing cells were unable to catalyze iron and electrode reduction, although the protein was correctly produced and oriented. However, OmcA production resulted in a higher birnessite reduction rate compared with the mutant. The presence of the decaheme cytochrome SO_2931 as well as the diheme cytochrome SO_1659 did not rescue the phenotype of the deletion mutant.
Collapse
Affiliation(s)
- Clemens Bücking
- Department of Microbiology, Institute for Biology II, University of Freiburg, Germany
| | | | | | | |
Collapse
|
15
|
Bodemer GJ, Antholine WA, Basova LV, Saffarini D, Pacheco AA. The effect of detergents and lipids on the properties of the outer-membrane protein OmcA from Shewanella oneidensis. J Biol Inorg Chem 2010; 15:749-58. [DOI: 10.1007/s00775-010-0643-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/24/2010] [Indexed: 11/27/2022]
|
16
|
Reardon CL, Dohnalkova AC, Nachimuthu P, Kennedy DW, Saffarini DA, Arey BW, Shi L, Wang Z, Moore D, McLean JS, Moyles D, Marshall MJ, Zachara JM, Fredrickson JK, Beliaev AS. Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1. GEOBIOLOGY 2010; 8:56-68. [PMID: 20002197 DOI: 10.1111/j.1472-4669.2009.00226.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In an effort to improve the understanding of electron transfer mechanisms at the microbe-mineral interface, Shewanella oneidensis MR-1 mutants with in-frame deletions of outer-membrane cytochromes (OMCs), MtrC and OmcA, were characterized for the ability to reduce ferrihydrite (FH) using a suite of microscopic, spectroscopic, and biochemical techniques. Analysis of purified recombinant proteins demonstrated that both cytochromes undergo rapid electron exchange with FH in vitro with MtrC displaying faster transfer rates than OmcA. Immunomicroscopy with cytochrome-specific antibodies revealed that MtrC co-localizes with iron solids on the cell surface while OmcA exhibits a more diffuse distribution over the cell surface. After 3-day incubation of MR-1 with FH, pronounced reductive transformation mineral products were visible by electron microscopy. Upon further incubation, the predominant phases identified were ferrous phosphates including vivianite [Fe(3)(PO(4))(2)x8H(2)O] and a switzerite-like phase [Mn(3),Fe(3)(PO(4))(2)x7H(2)O] that were heavily colonized by MR-1 cells with surface-exposed outer-membrane cytochromes. In the absence of both MtrC and OmcA, the cells ability to reduce FH was significantly hindered and no mineral transformation products were detected. Collectively, these results highlight the importance of the outer-membrane cytochromes in the reductive transformation of FH and support a role for direct electron transfer from the OMCs at the cell surface to the mineral.
Collapse
Affiliation(s)
- C L Reardon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Paquete CM, Louro RO. Molecular details of multielectron transfer: the case of multiheme cytochromes from metal respiring organisms. Dalton Trans 2009; 39:4259-66. [PMID: 20422082 DOI: 10.1039/b917952f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Shewanella are facultative anaerobic bacteria of remarkable respiratory versatility that includes the dissimilatory reduction of metal ores. They contain a large number of multiheme c-type cytochromes that play a significant role in various anaerobic respiratory processes. Of all the cytochromes found in Shewanella, only the two most abundant periplasmic cytochromes, the small tetraheme cytochrome (STC) and flavocytochrome c(3) (Fcc(3)) have been structurally characterized. For these two proteins the molecular bases for their redox properties were determined using spectroscopic methods based on paramagnetic NMR, that allow the contribution of specific hemes to be discriminated. In this perspective these results are reviewed in the context of the continuing effort to understand the molecular mechanisms of electron transfer in the respiratory chains of these organisms.
Collapse
|
18
|
Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 2009; 75:7789-96. [PMID: 19837833 DOI: 10.1128/aem.01834-09] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dissimilatory microbial reduction of insoluble Fe(III) oxides is a geochemically and ecologically important process which involves the transfer of cellular, respiratory electrons from the cytoplasmic membrane to insoluble, extracellular, mineral-phase electron acceptors. In this paper evidence is provided for the function of the periplasmic fumarate reductase FccA and the decaheme c-type cytochrome MtrA in periplasmic electron transfer reactions in the gammaproteobacterium Shewanella oneidensis. Both proteins are abundant in the periplasm of ferric citrate-reducing S. oneidensis cells. In vitro fumarate reductase FccA and c-type cytochrome MtrA were reduced by the cytoplasmic membrane-bound protein CymA. Electron transfer between CymA and MtrA was 1.4-fold faster than the CymA-catalyzed reduction of FccA. Further experiments showing a bidirectional electron transfer between FccA and MtrA provided evidence for an electron transfer network in the periplasmic space of S. oneidensis. Hence, FccA could function in both the electron transport to fumarate and via MtrA to mineral-phase Fe(III). Growth experiments with a DeltafccA deletion mutant suggest a role of FccA as a transient electron storage protein.
Collapse
|
19
|
Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl Environ Microbiol 2009; 75:7674-81. [PMID: 19837834 DOI: 10.1128/aem.01142-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although members of the genus Shewanella have common features (e.g., the presence of decaheme c-type cytochromes [c-cyts]), they are widely variable in genetic and physiological features. The present study compared the current-generating ability of S. loihica PV-4 in microbial fuel cells (MFCs) with that of well-characterized S. oneidensis MR-1 and examined the roles of c-cyts in extracellular electron transfer. We found that strains PV-4 and MR-1 exhibited notable differences in current-generating mechanisms. While the MR-1 MFCs maintained a constant current density over time, the PV-4 MFCs continued to increase in current density and finally surpassed the MR-1 MFCs. Coulombic efficiencies reached 26% in the PV-4 MFC but 16% in the MR-1 MFCs. Although both organisms produced quinone-like compounds, anode exchange experiments showed that anode-attached cells of PV-4 produced sevenfold more current than planktonic cells in the same chamber, while planktonic cells of MR-1 produced twice the current of the anode-attached cells. Examination of the genome sequence indicated that PV-4 has more c-cyt genes in the metal reductase-containing locus than MR-1. Mutational analysis revealed that PV-4 relied predominantly on a homologue of the decaheme c-cyt MtrC in MR-1 for current generation, even though it also possesses two homologues of the decaheme c-cyt OmcA in MR-1. These results suggest that current generation in a PV-4 MFC is in large part accomplished by anode-attached cells, in which the MtrC homologue constitutes the main path of electrons toward the anode.
Collapse
|
20
|
Sorokin DY, Muyzer G. Bacterial dissimilatory MnO(2) reduction at extremely haloalkaline conditions. Extremophiles 2009; 14:41-6. [PMID: 19779762 PMCID: PMC2797408 DOI: 10.1007/s00792-009-0283-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/15/2009] [Indexed: 11/10/2022]
Abstract
A possibility of dissimilatory MnO2 reduction at extremely high salt and pH was studied in sediments from hypersaline alkaline lakes in Kulunda Steppe (Altai, Russia). Experiments with anaerobic sediment slurries demonstrated a relatively rapid reduction of colloidal MnO2 in the presence of acetate and formate as electron donor at in situ conditions (i.e., pH 10 and a salt content from 0.6 to 4 M total Na+). All reduced Mn at these conditions remained in the solid phase. A single, stable enrichment culture was obtained from the slurries consistently reducing MnO2 at pH 10 and 0.6 M total Na+ with formate. A pure culture of a haloalkaliphilic Mn-reducing bacterium obtained from the positive enrichment was phylogenetically closely related to the anaerobic haloalkaliphilic Bacillus arseniciselenatis isolated from Mono Lake (CA, USA). Bacillus sp. strain AMnr1 was obligately anaerobic, able to grow either by glucose fermentation, or respiring few nonfermentable substrates by using MnO2 as the electron acceptor. Optimal growth by dissimilatory MnO2 reduction was achieved with glycerol as electron donor at pH 9.5–10 and salt content between 0.4 and 0.8 M total Na+.
Collapse
Affiliation(s)
- Dimitri Yu Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, Moscow 117811, Russia.
| | | |
Collapse
|
21
|
Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 2009; 75:5218-26. [PMID: 19542342 DOI: 10.1128/aem.00544-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have used scaling kinetics and the concept of kinetic competence to elucidate the role of hemeproteins OmcA and MtrC in iron reduction by Shewanella oneidensis MR-1. Second-order rate constants for OmcA and MtrC were determined by single-turnover experiments. For soluble iron species, a stopped-flow apparatus was used, and for the less reactive iron oxide goethite, a conventional spectrophotometer was used to measure rates. Steady-state experiments were performed to obtain molecular rate constants by quantifying the OmcA and MtrC contents of membrane fractions and whole cells by Western blot analysis. For reduction of soluble iron, rates determined from transient-state experiments were able to account for rates obtained from steady-state experiments. However, this was not true with goethite; rate constants determined from transient-state experiments were 100 to 1,000 times slower than those calculated from steady-state experiments with membrane fractions and whole cells. In contrast, addition of flavins to the goethite experiments resulted in rates that were consistent with both transient- and steady-state experiments. Kinetic simulations of steady-state results with kinetic constants obtained from transient-state experiments supported flavin involvement. Therefore, we show for the first time that OmcA and MtrC are kinetically competent to account for catalysis of soluble iron reduction in whole Shewanella cells but are not responsible for electron transfer via direct contact alone with insoluble iron-containing minerals. This work supports the hypothesis that electron shuttles are important participants in the reduction of solid Fe phases by this organism.
Collapse
|
22
|
McLean JS, Majors PD, Reardon CL, Bilskis CL, Reed SB, Romine MF, Fredrickson JK. Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms. J Microbiol Methods 2008; 74:47-56. [DOI: 10.1016/j.mimet.2008.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/18/2008] [Indexed: 11/26/2022]
|
23
|
Gescher JS, Cordova CD, Spormann AM. Dissimilatory iron reduction in Escherichia coli: identification of CymA of Shewanella oneidensis and NapC of E. coli as ferric reductases. Mol Microbiol 2008; 68:706-19. [PMID: 18394146 DOI: 10.1111/j.1365-2958.2008.06183.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Over geological time scales, microbial reduction of chelated Fe(III) or Fe(III) minerals has profoundly affected today's composition of our bio- and geosphere. However, the electron transfer reactions that are specific and defining for dissimilatory iron(III)-reducing (DIR) bacteria are not well understood. Using a synthetic biology approach involving the reconstruction of the putative electron transport chain of the DIR bacterium Shewanella oneidensis MR-1 in Escherichia coli, we showed that expression of cymA was necessary and sufficient to convert E. coli into a DIR bacterium. In intact cells, the Fe(III)-reducing activity was limited to Fe(III) NTA as electron acceptor. In vitro biochemical analysis indicated that CymA, which is a cytoplasmic membrane-associated tetrahaem c-type cytochrome, carries reductase activity towards Fe(III) NTA, Fe(III) citrate, as well as to AQDS, a humic acid analogue. The in vitro specific activities of Fe(III) citrate reductase and AQDS reductase of E. coli spheroplasts were 10x and 30x higher, respectively, relative to the specific rates observed in intact cells, suggesting that access of chelated and insoluble forms of Fe(III) and AQDS is restricted in whole cells. Interestingly, the E. coli CymA orthologue NapC also carried ferric reductase activity. Our data support the argument that the biochemical mechanism of Fe(III) reduction per se was not the key innovation leading to environmental relevant DIR bacteria. Rather, the evolution of an extension of the electron transfer pathway from the Fe(III) reductase CymA to the cell surface via a system of periplasmic and outer membrane cytochrome proteins enabled access to diffusion-impaired electron acceptors.
Collapse
Affiliation(s)
- Johannes S Gescher
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
24
|
Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ. Redox-reactive membrane vesicles produced by Shewanella. GEOBIOLOGY 2008; 6:232-41. [PMID: 18498526 DOI: 10.1111/j.1472-4669.2008.00158.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This manuscript is dedicated to our friend, mentor, and coauthor Dr Terry Beveridge, who devoted his scientific career to advancing fundamental aspects of microbial ultrastructure using innovative electron microscopic approaches. During his graduate studies with Professor Robert Murray, Terry provided some of the first glimpses and structural evaluations of the regular surface arrays (S-layers) of Gram-negative bacteria (Beveridge & Murray, 1974, 1975, 1976a). Beginning with his early electron microscopic assessments of metal binding by cell walls from Gram-positive bacteria (Beveridge & Murray, 1976b, 1980) and continuing with more than 30 years of pioneering research on microbe-mineral interactions (Hoyle & Beveridge, 1983, 1984; Ferris et al., 1986; Gorby et al., 1988; Beveridge, 1989; Mullen et al., 1989; Urrutia Mera et al., 1992; Mera & Beveridge, 1993; Brown et al., 1994; Konhauser et al., 1994; Beveridge et al., 1997; Newman et al., 1997; Lower et al., 2001; Glasauer et al., 2002; Baesman et al., 2007), Terry helped to shape the developing field of biogeochemistry. Terry and his associates are also widely regarded for their research defining the structure and function of outer membrane vesicles from Gram-negative bacteria that facilitate processes ranging from the delivery of pathogenic enzymes to the possible exchange of genetic information. The current report represents the confluence of two of Terry's thematic research streams by demonstrating that membrane vesicles produced by dissimilatory metal-reducing bacteria from the genus Shewanella catalyze the enzymatic transformation and precipitation of heavy metals and radionuclides. Under low-shear conditions, membrane vesicles are commonly tethered to intact cells by electrically conductive filaments known as bacterial nanowires. The functional role of membrane vesicles and associated nanowires is not known, but the potential for mineralized vesicles that morphologically resemble nanofossils to serve as palaeontological indicators of early life on Earth and as biosignatures of life on other planets is recognized.
Collapse
Affiliation(s)
- Y Gorby
- J. Craig Venter Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl Environ Microbiol 2008; 74:4277-84. [PMID: 18515480 DOI: 10.1128/aem.02901-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Pelobacter species are closely related to Geobacter species, recent studies suggested that Pelobacter carbinolicus may reduce Fe(III) via a different mechanism because it lacks the outer-surface c-type cytochromes that are required for Fe(III) reduction by Geobacter sulfurreducens. Investigation into the mechanisms for Fe(III) reduction demonstrated that P. carbinolicus had growth yields on both soluble and insoluble Fe(III) consistent with those of other Fe(III)-reducing bacteria. Comparison of whole-genome transcript levels during growth on Fe(III) versus fermentative growth demonstrated that the greatest apparent change in gene expression was an increase in transcript levels for four contiguous genes. These genes encode two putative periplasmic thioredoxins; a putative outer-membrane transport protein; and a putative NAD(FAD)-dependent dehydrogenase with homology to disulfide oxidoreductases in the N terminus, rhodanese (sulfurtransferase) in the center, and uncharacterized conserved proteins in the C terminus. Unlike G. sulfurreducens, transcript levels for cytochrome genes did not increase in P. carbinolicus during growth on Fe(III). P. carbinolicus could use sulfate as the sole source of sulfur during fermentative growth, but required elemental sulfur or sulfide for growth on Fe(III). The increased expression of genes potentially involved in sulfur reduction, coupled with the requirement for sulfur or sulfide during growth on Fe(III), suggests that P. carbinolicus reduces Fe(III) via an indirect mechanism in which (i) elemental sulfur is reduced to sulfide and (ii) the sulfide reduces Fe(III) with the regeneration of elemental sulfur. This contrasts with the direct reduction of Fe(III) that has been proposed for Geobacter species.
Collapse
|
26
|
Wigginton NS, Rosso KM, Hochella MF. Mechanisms of Electron Transfer in Two Decaheme Cytochromes from a Metal-Reducing Bacterium. J Phys Chem B 2007; 111:12857-64. [DOI: 10.1021/jp0718698] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Shi L, Squier TC, Zachara JM, Fredrickson JK. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 2007; 65:12-20. [PMID: 17581116 PMCID: PMC1974784 DOI: 10.1111/j.1365-2958.2007.05783.x] [Citation(s) in RCA: 425] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.
Collapse
Affiliation(s)
- Liang Shi
- For corresspondence. *E-mail ; Tel. (+1) 509 376 4834; Fax (+1) 509 372 1632
| | | | | | | |
Collapse
|
28
|
Marshall MJ, Plymale AE, Kennedy DW, Shi L, Wang Z, Reed SB, Dohnalkova AC, Simonson CJ, Liu C, Saffarini DA, Romine MF, Zachara JM, Beliaev AS, Fredrickson JK. Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1. Environ Microbiol 2007; 10:125-36. [PMID: 17888007 DOI: 10.1111/j.1462-2920.2007.01438.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pertechnetate, (99)Tc(VII)O(4)(-), is a highly mobile radionuclide contaminant at US Department of Energy sites that can be enzymatically reduced by a range of anaerobic and facultatively anaerobic microorganisms, including Shewanella oneidensis MR-1, to poorly soluble Tc(IV)O(2(s)). In other microorganisms, Tc(VII)O(4)(-) reduction is generally considered to be catalysed by hydrogenase. Here, we provide evidence that although the NiFe hydrogenase of MR-1 was involved in the H(2)-driven reduction of Tc(VII)O(4)(-)[presumably through a direct coupling of H(2) oxidation and Tc(VII) reduction], the deletion of both hydrogenase genes did not completely eliminate the ability of MR-1 to reduce Tc(VII). With lactate as the electron donor, mutants lacking the outer membrane c-type cytochromes MtrC and OmcA or the proteins required for the maturation of c-type cytochromes were defective in reducing Tc(VII) to nanoparticulate TcO(2) x nH(2)O((s)) relative to MR-1 or a NiFe hydrogenase mutant. In addition, reduced MtrC and OmcA were oxidized by Tc(VII)O(4)(-), confirming the capacity for direct electron transfer from these OMCs to TcO(4)(-). c-Type cytochrome-catalysed Tc(VII) reduction could be a potentially important mechanism in environments where organic electron donor concentrations are sufficient to allow this reaction to dominate.
Collapse
Affiliation(s)
- Matthew J Marshall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 2007; 73:7003-12. [PMID: 17644630 PMCID: PMC2074945 DOI: 10.1128/aem.01087-07] [Citation(s) in RCA: 361] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.
Collapse
Affiliation(s)
- Orianna Bretschger
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Borloo J, Vergauwen B, De Smet L, Brigé A, Motte B, Devreese B, Van Beeumen J. A kinetic approach to the dependence of dissimilatory metal reduction by Shewanella oneidensis MR-1 on the outer membrane cytochromes c OmcA and OmcB. FEBS J 2007; 274:3728-3738. [PMID: 17608722 DOI: 10.1111/j.1742-4658.2007.05907.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Gram-negative bacterium Shewanella oneidensis MR-1 shows a remarkably versatile anaerobic respiratory metabolism. One of its hallmarks is its ability to grow and survive through the reduction of metallic compounds. Among other proteins, outer membrane decaheme cytochromes c OmcA and OmcB have been identified as key players in metal reduction. In fact, both of these cytochromes have been proposed to be terminal Fe(III) and Mn(IV) reductases, although their role in the reduction of other metals is less well understood. To obtain more insight into this, we constructed and analyzed omcA, omcB and omcA/omcB insertion mutants of S. oneidensis MR-1. Anaerobic growth on Fe(III), V(V), Se(VI) and U(VI) revealed a requirement for both OmcA and OmcB in Fe(III) reduction, a redundant function in V(V) reduction, and no apparent involvement in Se(VI) and U(VI) reduction. Growth of the omcB(-) mutant on Fe(III) was more affected than growth of the omcA(-) mutant, suggesting OmcB to be the principal Fe(III) reductase. This result was corroborated through the examination of whole cell kinetics of OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction, showing that OmcB is approximately 11.5 and approximately 6.3 times faster than OmcA at saturating and low nonsaturating concentrations of Fe(III)-nitrilotriacetic acid, respectively, whereas the omcA(-) omcB(-) double mutant was devoid of Fe(III)-nitrilotriacetic acid reduction activity. These experiments reveal, for the first time, that OmcA and OmcB are the sole terminal Fe(III) reductases present in S. oneidensis MR-1. Kinetic inhibition experiments further revealed vanadate (V(2)O(5)) to be a competitive and mixed-type inhibitor of OmcA and OmcB, respectively, showing similar affinities relative to Fe(III)-nitrilotriacetic acid. Neither sodium selenate nor uranyl acetate were found to inhibit OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction. Taken together with our growth experiments, this suggests that proteins other than OmcA and OmcB play key roles in anaerobic Se(VI) and U(VI) respiration.
Collapse
Affiliation(s)
- Jimmy Borloo
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | - Bjorn Vergauwen
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | - Lina De Smet
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | - Ann Brigé
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | - Bart Motte
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| | - Jozef Van Beeumen
- Laboratory for Protein Biochemistry and Protein Engineering, Ghent University, Belgium
| |
Collapse
|
31
|
Jiao Y, Newman DK. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol 2007; 189:1765-73. [PMID: 17189359 PMCID: PMC1855732 DOI: 10.1128/jb.00776-06] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 12/12/2006] [Indexed: 11/20/2022] Open
Abstract
Phototrophic Fe(II)-oxidizing bacteria couple the oxidation of ferrous iron [Fe(II)] to reductive CO(2) fixation by using light energy, but until recently, little has been understood about the molecular basis for this process. Here we report the discovery, with Rhodopseudomonas palustris TIE-1 as a model organism, of a three-gene operon, designated the pio operon (for phototrophic iron oxidation), that is necessary for phototrophic Fe(II) oxidation. The first gene in the operon, pioA, encodes a c-type cytochrome that is upregulated under Fe(II)-grown conditions. PioA contains a signal sequence and shares homology with MtrA, a decaheme c-type cytochrome from Shewanella oneidensis MR-1. The second gene, pioB, encodes a putative outer membrane beta-barrel protein. PioB is a homologue of MtrB from S. oneidensis MR-1. The third gene, pioC, encodes a putative high potential iron sulfur protein (HiPIP) with a twin-arginine translocation (Tat) signal sequence and is similar to the putative Fe(II) oxidoreductase (Iro) from Acidithiobacillus ferrooxidans. Like PioA, PioB and PioC appear to be secreted proteins. Deletion of the pio operon results in loss of Fe(II) oxidation activity and growth on Fe(II). Complementation studies confirm that the phenotype of this mutant is due to loss of the pio genes. Deletion of pioA alone results in loss of almost all Fe(II) oxidation activity; however, deletion of either pioB or pioC alone results in only partial loss of Fe(II) oxidation activity. Together, these results suggest that proteins encoded by the pio operon are essential and specific for phototrophic Fe(II) oxidation in R. palustris TIE-1.
Collapse
Affiliation(s)
- Yongqin Jiao
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
32
|
Biju V, Pan D, Gorby YA, Fredrickson J, McLean J, Saffarini D, Lu HP. Combined spectroscopic and topographic characterization of nanoscale domains and their distributions of a redox protein on bacterial cell surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1333-8. [PMID: 17241055 DOI: 10.1021/la061343z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Redox protein nanoscale domains on the cell surface of a bacterium, Shewanella oneidensis MR1, grown in the absence and presence of electron acceptors, is topographically characterized using combined atomic force microscopy (AFM) and confocal surface enhanced Raman scattering (SERS) spectroscopy. The protruding nanoscale domains on the outer membrane of S. oneidensis were observed, as was their disappearance upon exposure to electron acceptors such as oxygen, nitrate, fumarate, and iron nitrilotriacetate (FeNTA). Using SERS spectroscopy, a redox heme protein was identified as a major component of the cell surface domains. This conclusion was further confirmed by the disappearance of Raman vibrational frequencies, characteristic of heme proteins, upon exposure of the cells to electron acceptors. Our experimental results from our AFM imaging and SERS spectroscopy, consistent with the literature, suggest the protruding nanoscale surface domains as heme-containing secretions. Our results on the distributions of redox proteins on microbial cell surfaces will be helpful for a mechanistic understanding of the behaviors of surface proteins and their interactions with redox environments.
Collapse
Affiliation(s)
- Vasudevanpillai Biju
- Fundamental Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Barton LL, Goulhen F, Bruschi M, Woodards NA, Plunkett RM, Rietmeijer FJM. The bacterial metallome: composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. Biometals 2007; 20:291-302. [PMID: 17216357 DOI: 10.1007/s10534-006-9059-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
In bacteria, the intracellular metal content or metallome reflects the metabolic requirements of the cell. When comparing the composition of metals in phytoplankton and bacteria that make up the macronutrients and the trace elements, we have determined that the content of trace elements in both of these microorganisms is markedly similar. The trace metals consisting of transition metals plus zinc are present in a stoichometric molar formula that we have calculated to be as follows: Fe(1)Mn(0.3)Zn(0.26)Cu(0.03)Co(0.03)Mo(0.03). Under conditions of routine cultivation, trace metal homeostasis may be maintained by a series of transporter systems that are energized by the cell. In specific environments where heavy metals are present at toxic levels, some bacteria have developed a detoxification strategy where the metallic ion is reduced outside of the cell. The result of this extracellular metabolism is that the bacterial metallome specific for trace metals is not disrupted. One of the microorganisms that reduces toxic metals outside of the cell is the sulfate-reducing bacterium Desulfovibrio desulfuricans. While D. desulfuricans reduces metals by enzymatic processes involving polyhemic cytochromes c3 and hydrogenases, which are all present inside the cell; we report the presence of chain B cytochrome c nitrite reductase, NrfA, in the outer membrane fraction of D. desulfuricans ATCC 27774 and discuss its activity as a metal reductase.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, Laboratory of Microbial Chemistry, University of New Mexico, MSC03 2020, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 2006; 4:752-64. [PMID: 16980937 DOI: 10.1038/nrmicro1490] [Citation(s) in RCA: 753] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.
Collapse
Affiliation(s)
- Karrie A Weber
- Department of Plant and Microbial Biology, 271 Koshland Hall, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
35
|
Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 2006; 103:11358-63. [PMID: 16849424 PMCID: PMC1544091 DOI: 10.1073/pnas.0604517103] [Citation(s) in RCA: 925] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shewanella oneidensis MR-1 produced electrically conductive pilus-like appendages called bacterial nanowires in direct response to electron-acceptor limitation. Mutants deficient in genes for c-type decaheme cytochromes MtrC and OmcA, and those that lacked a functional Type II secretion pathway displayed nanowires that were poorly conductive. These mutants were also deficient in their ability to reduce hydrous ferric oxide and in their ability to generate current in a microbial fuel cell. Nanowires produced by the oxygenic phototrophic cyanobacterium Synechocystis PCC6803 and the thermophilic, fermentative bacterium Pelotomaculum thermopropionicum reveal that electrically conductive appendages are not exclusive to dissimilatory metal-reducing bacteria and may, in fact, represent a common bacterial strategy for efficient electron transfer and energy distribution.
Collapse
Affiliation(s)
- Yuri A Gorby
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Bacteria are remarkable in their metabolic diversity due to their ability to harvest energy from myriad oxidation and reduction reactions. In some cases, their metabolisms involve redox transformations of metal(loid)s, which lead to the precipitation, transformation, or dissolution of minerals. Microorganism/mineral interactions not only affect the geochemistry of modern environments, but may also have contributed to shaping the near-surface environment of the early Earth. For example, bacterial anaerobic respiration of ferric iron or the toxic metalloid arsenic is well known to affect water quality in many parts of the world today, whereas the utilization of ferrous iron as an electron donor in anoxygenic photosynthesis may help explain the origin of Banded Iron Formations, a class of ancient sedimentary deposits. Bacterial genetics holds the key to understanding how these metabolisms work. Once the genes and gene products that catalyze geochemically relevant reactions are understood, as well as the conditions that trigger their expression, we may begin to predict when and to what extent these metabolisms influence modern geochemical cycles, as well as develop a basis for deciphering their origins and how organisms that utilized them may have altered the chemical and physical features of our planet.
Collapse
Affiliation(s)
- Laura R Croal
- Divisions of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|
37
|
Myers CR, Myers JM. Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol 2004; 70:5415-25. [PMID: 15345428 PMCID: PMC520873 DOI: 10.1128/aem.70.9.5415-5425.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | |
Collapse
|
38
|
Abstract
Dissimilatory Fe(III) and Mn(IV) reduction has an important influence on the geochemistry of modern environments, and Fe(III)-reducing microorganisms, most notably those in the Geobacteraceae family, can play an important role in the bioremediation of subsurface environments contaminated with organic or metal contaminants. Microorganisms with the capacity to conserve energy from Fe(III) and Mn(IV) reduction are phylogenetically dispersed throughout the Bacteria and Archaea. The ability to oxidize hydrogen with the reduction of Fe(III) is a highly conserved characteristic of hyperthermophilic microorganisms and one Fe(III)-reducing Archaea grows at the highest temperature yet recorded for any organism. Fe(III)- and Mn(IV)-reducing microorganisms have the ability to oxidize a wide variety of organic compounds, often completely to carbon dioxide. Typical alternative electron acceptors for Fe(III) reducers include oxygen, nitrate, U(VI) and electrodes. Unlike other commonly considered electron acceptors, Fe(III) and Mn(IV) oxides, the most prevalent form of Fe(III) and Mn(IV) in most environments, are insoluble. Thus, Fe(III)- and Mn(IV)-reducing microorganisms face the dilemma of how to transfer electrons derived from central metabolism onto an insoluble, extracellular electron acceptor. Although microbiological and geochemical evidence suggests that Fe(III) reduction may have been the first form of microbial respiration, the capacity for Fe(III) reduction appears to have evolved several times as phylogenetically distinct Fe(III) reducers have different mechanisms for Fe(III) reduction. Geobacter species, which are representative of the family of Fe(III) reducers that predominate in a wide diversity of sedimentary environments, require direct contact with Fe(III) oxides in order to reduce them. In contrast, Shewanella and Geothrix species produce chelators that solubilize Fe(III) and release electron-shuttling compounds that transfer electrons from the cell surface to the surface of Fe(III) oxides not in direct contact with the cells. Electron transfer from the inner membrane to the outer membrane in Geobacter and Shewanella species appears to involve an electron transport chain of inner-membrane, periplasmic, and outer-membrane c-type cytochromes, but the cytochromes involved in these processes in the two organisms are different. In addition, Geobacter species specifically express flagella and pili during growth on Fe(III) and Mn(IV) oxides and are chemotactic to Fe(II) and Mn(II), which may lead Geobacter species to the oxides under anoxic conditions. The physiological characteristics of Geobacter species appear to explain why they have consistently been found to be the predominant Fe(III)- and Mn(IV)-reducing microorganisms in a variety of sedimentary environments. In comparison with other respiratory processes, the study of Fe(III) and Mn(IV) reduction is in its infancy, but genome-enabled approaches are rapidly advancing our understanding of this environmentally significant physiology.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
39
|
Myers CR, Myers JM. The outer membrane cytochromes of Shewanella oneidensis MR-1 are lipoproteins. Lett Appl Microbiol 2004; 39:466-70. [PMID: 15482439 DOI: 10.1111/j.1472-765x.2004.01611.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To determine if the outer membrane (OM) cytochromes OmcA and OmcB of the metal-reducing bacterium Shewanella oneidensis MR-1 are lipoproteins, and to assess cell surface exposure of the cytochromes by radioiodination. METHODS AND RESULTS In anaerobic MR-1 cells grown with (3)H-palmitoleic acid, both OmcA and OmcB were radiolabelled. The identities of these bands were confirmed by the absence of each radiolabelled band in the respective mutants lacking individual OM cytochromes. Radioiodination of cell surface proteins in anaerobic cells resulted in (125)I-labelled OmcA. The identity of this band was confirmed by its absence in an OmcA-minus mutant. A ubiquitous radioiodinated band that migrates similarly to OmcB precluded the ability to determine the potential cell surface exposure of OmcB by this method. CONCLUSIONS Both OmcA and OmcB are lipoproteins, and OmcA is cell surface exposed. SIGNIFICANCE The lipoprotein modification of these OM cytochromes could be important for their localization or incorporation into the OM. The cell surface exposure of OmcA could allow it to directly transfer electrons to extracellular electron acceptors (e.g. manganese oxides) and is consistent with its in vivo role.
Collapse
Affiliation(s)
- C R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
40
|
Myers JM, Antholine WE, Myers CR. Vanadium(V) reduction by Shewanella oneidensis MR-1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes. Appl Environ Microbiol 2004; 70:1405-12. [PMID: 15006760 PMCID: PMC368379 DOI: 10.1128/aem.70.3.1405-1412.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species.
Collapse
Affiliation(s)
- Judith M Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|