1
|
Enniatin B and beauvericin affect intestinal cell function and hematological processes in Atlantic salmon (Salmo salar) after acute exposure. Food Chem Toxicol 2023; 172:113557. [PMID: 36526092 DOI: 10.1016/j.fct.2022.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Unintentional use of mold-infested plant-based feed ingredients are sources of mycotoxins in fish feeds. The presence of the emerging mycotoxins ENNB and BEA in Norwegian commercial fish feeds and plant-based feed ingredients has raised concerns regarding the health effects on farmed Atlantic salmon (Salmon salar). Atlantic salmon pre-smolts were exposed to non-lethal doses of BEA and ENNB (ctrl, 50 and 500 μg/kg feed for 12 h), after which total RNA sequencing of the intestine and liver was carried out to evaluate gut health and identify possible hepatological changes after acute dietary exposure. ENNB and BEA did not trigger acute toxicity, however ENNB caused the onset of pathways linked to acute intestinal inflammation and BEA exposures caused the onset of hepatic hematological disruption. The prevalence and concentration of ENNB found in today's commercial feed could affect the fish health if consumed over a longer time-period.
Collapse
|
2
|
Bondos SE, Geraldo Mendes G, Jons A. Context-dependent HOX transcription factor function in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:225-262. [PMID: 32828467 DOI: 10.1016/bs.pmbts.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, HOX transcription factors determine the fate of developing tissues to generate diverse organs and appendages. The power of these proteins is striking: mis-expressing a HOX protein causes homeotic transformation of one body part into another. During development, HOX proteins interpret their cellular context through protein interactions, alternative splicing, and post-translational modifications to regulate cell proliferation, cell death, cell migration, cell differentiation, and angiogenesis. Although mutation and/or mis-expression of HOX proteins during development can be lethal, changes in HOX proteins that do not pattern vital organs can result in survivable malformations. In adults, mutation and/or mis-expression of HOX proteins disrupts their gene regulatory networks, deregulating cell behaviors and leading to arthritis and cancer. On the molecular level, HOX proteins are composed of DNA binding homeodomain, and large regions of unstructured, or intrinsically disordered, protein sequence. The primary roles of HOX proteins in arthritis and cancer suggest that mutations associated with these diseases in both the structured and disordered regions of HOX proteins can have substantial functional effects. These insights lead to new questions critical for understanding and manipulating HOX function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States.
| | - Gabriela Geraldo Mendes
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| | - Amanda Jons
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Alam T, Uludag M, Essack M, Salhi A, Ashoor H, Hanks JB, Kapfer C, Mineta K, Gojobori T, Bajic VB. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts. Nucleic Acids Res 2017; 45:2838-2848. [PMID: 27924038 PMCID: PMC5389649 DOI: 10.1093/nar/gkw973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/11/2016] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNA (ncRNA) genes play a major role in control of heterogeneous cellular behavior. Yet, their functions are largely uncharacterized. Current available databases lack in-depth information of ncRNA functions across spectrum of various cells/tissues. Here, we present FARNA, a knowledgebase of inferred functions of 10,289 human ncRNA transcripts (2,734 microRNA and 7,555 long ncRNA) in 119 tissues and 177 primary cells of human. Since transcription factors (TFs) and TF co-factors (TcoFs) are crucial components of regulatory machinery for activation of gene transcription, cellular processes and diseases in which TFs and TcoFs are involved suggest functions of the transcripts they regulate. In FARNA, functions of a transcript are inferred from TFs and TcoFs whose genes co-express with the transcript controlled by these TFs and TcoFs in a considered cell/tissue. Transcripts were annotated using statistically enriched GO terms, pathways and diseases across cells/tissues based on guilt-by-association principle. Expression profiles across cells/tissues based on Cap Analysis of Gene Expression (CAGE) are provided. FARNA, having the most comprehensive function annotation of considered ncRNAs across widest spectrum of human cells/tissues, has a potential to greatly contribute to our understanding of ncRNA roles and their regulatory mechanisms in human. FARNA can be accessed at: http://cbrc.kaust.edu.sa/farna
Collapse
Affiliation(s)
- Tanvir Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Mahmut Uludag
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Haitham Ashoor
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - John B Hanks
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Craig Kapfer
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Katsuhiko Mineta
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Suksaweang S, Jiang TX, Roybal P, Chuong CM, Widelitz R. Roles of EphB3/ephrin-B1 in feather morphogenesis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:719-28. [PMID: 23319347 PMCID: PMC3684256 DOI: 10.1387/ijdb.120021rw] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ephrin receptor (Eph) tyrosine kinases and their ephrin ligands are involved in morphogenesis during organ formation. We studied their role in feather morphogenesis, focusing on ephrin-B1 and its receptor EphB3. Early in feather development, ephrin-B1 mRNA and protein were found to be expressed in the dermal condensation, but not in the inter-bud mesenchyme. Later, in feather buds, expression was found in both the epithelium and mesenchyme. In the feather follicle, ephrin-B1 protein expression was found to be enriched in the feather filament epithelium and in the marginal plate which sets the boundary between the barb ridges. EphB3 mRNA was also expressed in epithelia. In the feather bud, its expression was restricted to the posterior bud. In the follicle, its expression formed a circle at the bud base which may set the boundary between bud and inter-bud domains. Perturbation with ephrin-B1/Fc altered feather primordia segregation and feather bud elongation. Analyses revealed that ephrin-B1/Fc caused three types of changes: blurred placode boundaries with loose dermal condensations, incomplete follicle invagination with less compact dermal papillae, and aberrant barb ridge patterning in feather filament morphogenesis. Thus, while ephrin-B1 suppression does not inhibit the initial emergence of a new epithelial domain, Eph/ephrin-B1 interaction is required for its proper completion. Consequently, we propose that interaction between ephrin-B1 and its receptor is involved in boundary stabilization during feather morphogenesis.
Collapse
Affiliation(s)
- Sanong Suksaweang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Pathology and Laboratory Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Paul Roybal
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, 90033
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Randall Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
5
|
Nolte SV, Xu W, Rennekampff HO, Rodemann HP. Diversity of Fibroblasts – A Review on Implications for Skin Tissue Engineering. Cells Tissues Organs 2008; 187:165-76. [DOI: 10.1159/000111805] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2007] [Indexed: 11/19/2022] Open
|
6
|
Onnebo SMN, Saiardi A. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129:647-9. [PMID: 17512396 DOI: 10.1016/j.cell.2007.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Noncoding RNAs (ncRNA) participate in epigenetic regulation but are poorly understood. Here we characterize the transcriptional landscape of the four human HOX loci at five base pair resolution in 11 anatomic sites and identify 231 HOX ncRNAs that extend known transcribed regions by more than 30 kilobases. HOX ncRNAs are spatially expressed along developmental axes and possess unique sequence motifs, and their expression demarcates broad chromosomal domains of differential histone methylation and RNA polymerase accessibility. We identified a 2.2 kilobase ncRNA residing in the HOXC locus, termed HOTAIR, which represses transcription in trans across 40 kilobases of the HOXD locus. HOTAIR interacts with Polycomb Repressive Complex 2 (PRC2) and is required for PRC2 occupancy and histone H3 lysine-27 trimethylation of HOXD locus. Thus, transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance; these results have broad implications for gene regulation in development and disease states.
Collapse
Affiliation(s)
- Sara Maria Nancy Onnebo
- Medical Research Council (MRC) Cell Biology Unit and Laboratory for Molecular Cell Biology, Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
7
|
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129:1311-23. [PMID: 17604720 PMCID: PMC2084369 DOI: 10.1016/j.cell.2007.05.022] [Citation(s) in RCA: 3316] [Impact Index Per Article: 195.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/28/2007] [Accepted: 05/09/2007] [Indexed: 02/09/2023]
Abstract
Noncoding RNAs (ncRNA) participate in epigenetic regulation but are poorly understood. Here we characterize the transcriptional landscape of the four human HOX loci at five base pair resolution in 11 anatomic sites and identify 231 HOX ncRNAs that extend known transcribed regions by more than 30 kilobases. HOX ncRNAs are spatially expressed along developmental axes and possess unique sequence motifs, and their expression demarcates broad chromosomal domains of differential histone methylation and RNA polymerase accessibility. We identified a 2.2 kilobase ncRNA residing in the HOXC locus, termed HOTAIR, which represses transcription in trans across 40 kilobases of the HOXD locus. HOTAIR interacts with Polycomb Repressive Complex 2 (PRC2) and is required for PRC2 occupancy and histone H3 lysine-27 trimethylation of HOXD locus. Thus, transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance; these results have broad implications for gene regulation in development and disease states.
Collapse
Affiliation(s)
- John L Rinn
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chang CH, Yu M, Wu P, Jiang TX, Yu HS, Widelitz RB, Chuong CM. Sculpting skin appendages out of epidermal layers via temporally and spatially regulated apoptotic events. J Invest Dermatol 2004; 122:1348-55. [PMID: 15175023 PMCID: PMC4386661 DOI: 10.1111/j.0022-202x.2004.22611.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Complex skin appendages are built from the epidermal cells through various cell events. Here we used TUNEL and caspase-3 immuno-localization to examine apoptosis in feather morphogenesis. We deduced three modes. In Mode 1A, apoptosis occurs within the localized growth zone (LoGZ) to regulate growth (feather buds). In Mode 1B, morphogen secreting cells are present adjacent to LoGZ and apoptosis may work to remove such signaling centers (barb ridges). In Mode 2, keratinocytes apoptosed before terminal differentiation and left spaces between branches (marginal plate). In Mode 3A, keratinocytes cornified and flaked off to free skin appendages (feather sheath, pulp epithelium). In Mode 3B, keratinized apoptosed epithelial cells became permanent structures (rachis, ramus, barbules). Thus, different apoptotic modes can have different impacts on morphogenesis. We further tested effects of imbalanced Shh on apoptosis. Shh suppression reduced marginal plate apoptosis and caused abnormal differentiation of barbule plates. Shh over-expression enhanced proliferation in barb ridges. Expression of Patched in the barbule plate epithelia implies a paracrine mechanism. The current work complements our recent work on LoGZ to show how adding and removing cell masses in temporally and spatially specific ways are coordinated to sculpt skin appendages from epidermal layers.
Collapse
Affiliation(s)
- Chung-Hsing Chang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
- Department of Dermatology, Tzu Chi Medical Center and Tzu Chi University, Hualien, Taiwan
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mingke Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| | - Hsin-Su Yu
- Department of Dermatology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
- Author for correspondence and reprints request: Cheng-Ming Chuong, MD, PhD, Department of Pathology, Univ. Southern California, HMR 315B, 2011 Zonal Ave, Los Angeles, CA 90033, TEL 323 442 1296, FAX 323 442 3049,
| |
Collapse
|