1
|
Jian Y, Yang K, Sun X, Zhao J, Huang K, Aldanakh A, Xu Z, Wu H, Xu Q, Zhang L, Xu C, Yang D, Wang S. Current Advance of Immune Evasion Mechanisms and Emerging Immunotherapies in Renal Cell Carcinoma. Front Immunol 2021; 12:639636. [PMID: 33767709 PMCID: PMC7985340 DOI: 10.3389/fimmu.2021.639636] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Renal cell carcinoma is a highly heterogeneous cancer group, and the complex microenvironment of the tumor provides appropriate immune evasion opportunities. The molecular mechanism of immune escape in renal cell carcinoma is currently a hot issue, focusing primarily on the major complex of histocompatibility, immunosuppressive cells, their secreted immunosuppressive cytokines, and apoptosis molecule signal transduction. Immunotherapy is the best treatment option for patients with metastatic or advanced renal cell carcinoma and combination immunotherapy based on a variety of principles has shown promising prospects. Comprehensive and in-depth knowledge of the molecular mechanism of immune escape in renal cell carcinoma is of vital importance for the clinical implementation of effective therapies. The goal of this review is to address research into the mechanisms of immune escape in renal cell carcinoma and the use of the latest immunotherapy. In addition, we are all looking forward to the latest frontiers of experimental combination immunotherapy.
Collapse
Affiliation(s)
- Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Kangkang Yang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jun Zhao
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kai Huang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Aldanakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Haotian Wu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiwei Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Chunyan Xu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Ghahremanifard P, Chanda A, Bonni S, Bose P. TGF-β Mediated Immune Evasion in Cancer-Spotlight on Cancer-Associated Fibroblasts. Cancers (Basel) 2020; 12:cancers12123650. [PMID: 33291370 PMCID: PMC7762018 DOI: 10.3390/cancers12123650] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Various components of the tumor microenvironment (TME) play a critical role in promoting tumorigenesis, progression, and metastasis. One of the primary functions of the TME is to stimulate an immunosuppressive environment around the tumor through multiple mechanisms including the activation of the transforming growth factor-beta (TGF-β) signaling pathway. Cancer-associated fibroblasts (CAFs) are key cells in the TME that regulate the secretion of extracellular matrix (ECM) components under the influence of TGF-β. Recent reports from our group and others have described an ECM-related and CAF-associated novel gene signature that can predict resistance to immune checkpoint blockade (ICB). Importantly, studies have begun to test whether targeting some of these CAF-associated components can be used as a combinatorial approach with ICB. This perspective summarizes recent advances in our understanding of CAF and TGF-β-regulated immunosuppressive mechanisms and ways to target such signaling in cancer.
Collapse
Affiliation(s)
- Parisa Ghahremanifard
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ayan Chanda
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (P.G.); (A.C.); (S.B.)
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Ohlson Research Initiative, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Correspondence: ; Tel.: +1-403-220-8507; Fax: +1-403-270-3145
| |
Collapse
|
3
|
Zhu D, Tang Q, Yu B, Meng M, Liu W, Li J, Zhu T, Vanhoutte PM, Leung SW, Zhang Y, Shi Y. Major histocompatibility complexes are up-regulated in glomerular endothelial cells via activation of c-Jun N-terminal kinase in 5/6 nephrectomy mice. Br J Pharmacol 2020; 177:5131-5147. [PMID: 32830316 PMCID: PMC7589013 DOI: 10.1111/bph.15237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aims to explore the mechanism underlying the up-regulation of major histocompatibility complex (MHC) proteins in glomerular endothelial cells in 5/6 nephrectomy mice. EXPERIMENTAL APPROACH C57/BL6 mice were randomly allocated to sham-operated (2K) and 5/6 nephrectomy (5/6Nx) groups. Mouse splenic lymphocytes, from either syngeneic or allogeneic background, were injected into 5/6Nx mice after total body irradiation. Human glomerular endothelial cells (HGECs) were cultured for experiments in vitro. Western blots, PCR, immunohistochemical and fluorescent staining were used, along with assays of tissue cytokines, lymphocyte migration and renal function. KEY RESULTS Four weeks after nephrectomy, expression of both mRNA and protein of MHC II, CD80, and CD86 were increased in 5/6Nx glomerular endothelial cells. After total body irradiation, 5/6Nx mice injected with lymphocytes from Balb/c mice, but not those from C57/BL6 mice, exhibited increased creatinine levels, indicating that allograft lymphocyte transfer impaired renal function. In HGECs, the protein levels of MHC and MHC Class II transactivator (CIITA) were increased by stimulation with TNF-α or IFN-γ, which promoted human lymphocytes movement. These increases were reduced by JNK inhibitors. In the 5/6Nx mice, JNK inhibition down-regulated MHC II protein in glomerular endothelial cells, suggesting that JNK signalling participates in the regulation of MHC II protein. CONCLUSION AND IMPLICATIONS Chronic inflammation in mice subjected to nephrectomy induces the up-regulation of MHC molecules in glomerular endothelial cells. This up-regulation is reduced by inhibition of JNK signalling.
Collapse
Affiliation(s)
- Dong Zhu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Qunye Tang
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Baixue Yu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Mei Meng
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Wenjie Liu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Jiawei Li
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Tongyu Zhu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Paul M. Vanhoutte
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong
| | - Susan W.S. Leung
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong
| | - Yi Zhang
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Yi Shi
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Beneficial effect of Bupleurum polysaccharides on autoimmune-prone MRL-lpr mice. Clin Dev Immunol 2012; 2012:842928. [PMID: 22701502 PMCID: PMC3372380 DOI: 10.1155/2012/842928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/28/2012] [Accepted: 04/10/2012] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease leading to inflammatory tissue damage in multiple organs. The crude polysaccharides (BPs) isolated from the roots of Bupleurum smithii var. parvifolium have anticomplementary activity and immunomodulatory functions on macrophages. To study its potential benefit on SLE, we examined effects of BPs on MRL-lpr mice, which have similar disease features to human SLE. MRL-lpr mice were treated orally with BPs 15, 30, or 60 mg kg−1 day−1 for 12 weeks and their SLE characteristics were evaluated. The results revealed that BPs elongated life span, improved kidney function, delayed lymphadenopathy, and reduced autoantibodies. It seemed to be mediated by inhibition of complement and macrophages activation and suppression of interferon-γ (IFN-γ) and interleukin-6 (IL-6) gene expression in the kidney. These results implicate that BPs may be an immunomodulator for the treatment of autoimmune diseases like SLE.
Collapse
|
5
|
Zhang L, Yang N, Wang S, Huang B, Li F, Tan H, Liang Y, Chen M, Li Y, Yu X. Adenosine 2A receptor is protective against renal injury in MRL/lpr mice. Lupus 2010; 20:667-77. [PMID: 21183557 DOI: 10.1177/0961203310393262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Adenosine is considered as a potent endogenous anti-inflammatory and immunosuppressive molecule. We examined the roles of A2A-adenosine receptor (A(2A)R) in the progression of lupus nephritis. METHODS MRL/lpr mice were given a selective A(2A)R agonist, CGS21680 (0.4 mg/kg per day, i.p.) while control mice received saline only. After 8 weeks of treatment, mice were sacrificed for assessment of functional and histological parameters as well as inflammatory infiltration in the kidneys. MCP-1, IFN-γ, MHC-II and A(2A)R mRNA expression was evaluated by RT-PCR. Expression of A(2A)R and nuclear NFκB p65 protein was determined by Western blot analysis. Levels of anti-dsDNA antibody and IFN-γ were measured by ELISA. RESULTS CGS21680 treatment resulted in significant decrease in proteinuria, blood urea and creatinine as well as improvement in renal histology. Renal macrophage and T-cell infiltration were significantly attenuated in association with suppressed expression of MCP-1, IFN-γ and MHC-II. CGS21680 treatment reduced the level of serum anti-dsDNA and renal immune complex deposition. CGS21680 inhibited the activation of NFκB and suppressed the expression of IFN-γ, MCP-1 and MHC-II in MRL/lpr splenocytes. CONCLUSIONS A(2A)R activation suppressed inflammation in the kidneys of MRL/lpr mice and can be considered as a novel therapeutic approach for human lupus nephritis.
Collapse
Affiliation(s)
- L Zhang
- Department of Nephrology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wilkinson R, Wang X, Roper KE, Healy H. Activated human renal tubular cells inhibit autologous immune responses. Nephrol Dial Transplant 2010; 26:1483-92. [DOI: 10.1093/ndt/gfq677] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
7
|
Starke A, Wüthrich RP, Waeckerle-Men Y. TGF-beta treatment modulates PD-L1 and CD40 expression in proximal renal tubular epithelial cells and enhances CD8 cytotoxic T-cell responses. Nephron Clin Pract 2007; 107:e22-9. [PMID: 17671397 DOI: 10.1159/000106506] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 05/10/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM TGF-beta expression is increased in immune-mediated and fibrotic renal diseases and modulates the tubulointerstitial T-cell response. We examined whether TGF-beta changes the expression of PD-L1 and CD40 in the renal proximal tubular epithelial cell (TEC), and whether the activation of CD8(+) cytotoxic T cells (CTLs) is influenced by TGF-beta treatment of TECs. METHODS Murine TECs were treated with TGF-beta or IFN-gamma. The expression of PD-L1 and CD40 was examined with RT-PCR and flow cytometry. To investigate if TGF-beta treatment influenced the antigen presentation capacity of TECs, OT-1 CTLs were co-incubated with TGF-beta-treated, OVA(257-264) peptide-pulsed congeneic TECs. The cytotoxicity of OT-1 CTLs was estimated by their capacity to produce IFN-gamma and their cytolytic activity. RESULTS TGF-beta treatment lead to a transition in morphology of renal TECs and downregulated the basal and the IFN-gamma-stimulated PD-L1 expression in TECs. Interestingly, TGF-beta treatment of TECs increased the constitutive and IFN-gamma-induced CD40 expression. In contrast to IFN-gamma which reduced the CTL activity, TGF-beta treatment of TECs elevated the OVA-specific CTL response. CONCLUSION Our data show that TGF-beta changed the cellular phenotype and the expression of PD-L1 and CD40 on TECs and enhanced the activity of OVA peptide-specific CD8(+) T cells. TGF-beta may thereby play an important role in the progression of renal tubulointerstitial damage in CD8(+) T-cell-mediated renal diseases.
Collapse
Affiliation(s)
- Astrid Starke
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich-Irchel, Switzerland
| | | | | |
Collapse
|
8
|
Howe KL, Wang A, Hunter MM, Stanton BA, McKay DM. TGFbeta down-regulation of the CFTR: a means to limit epithelial chloride secretion. Exp Cell Res 2004; 298:473-84. [PMID: 15265695 DOI: 10.1016/j.yexcr.2004.04.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 04/13/2004] [Indexed: 11/22/2022]
Abstract
Transforming growth factor beta (TGFbeta) is a multifunctional cytokine with effects on many cell types. We recently showed that in addition to epithelial barrier enhancing properties, TGFbeta causes diminished cAMP-driven chloride secretion in colonic epithelia, in a manner that is p38 MAPK-dependent. In this study, we sought to further delineate the mechanism behind TGFbeta diminution of chloride secretion. Using colonic and kidney epithelial cell lines, we found that exposure to TGFbeta causes dramatic changes in the expression and localization of the apical membrane chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR). In TGFbeta-treated colonic epithelia (T84 and HT-29), CFTR mRNA was significantly reduced 2-24 h post-cytokine exposure. At a time consistent with decreased colonic epithelial secretory responses (16 h), TGFbeta treatment caused diminished intracellular CFTR protein expression (confocal microscopy) and reduced channel expression in the apical membrane during stimulated chloride secretion (biotinylation assay). In comparison, polarized kidney epithelia (MDCK) treated with TGFbeta displayed similarly reduced secretory responses to cAMP stimulating agents; however, a perinuclear accumulation of CFTR was observed, contrasting the diffuse cytoplasmic CFTR expression of control cells. Our data indicate that TGFbeta has profound effects on the expression and subcellular localization of an important channel involved in cAMP-driven chloride secretion, and thus suggest TGFbeta represents a key regulator of fluid movement.
Collapse
Affiliation(s)
- Kathryn L Howe
- Intestinal Disease Research Programme, Department of Pathology and Molecular Medicine, McMaster University, HSC-3N5C, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
9
|
Banu N, Mozes MM, Kopp JB, Ziyadeh FN, Meyers CM. Regulation of inducible class II MHC, costimulatory molecules, and cytokine expression in TGF-beta1 knockout renal epithelial cells: effect of exogenous TGF-beta1. EXPERIMENTAL NEPHROLOGY 2003; 10:320-31. [PMID: 12381916 DOI: 10.1159/000065295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As reports of mice genetically deficient for TGF-beta1 demonstrated aberrant renal class II MHC expression, we investigated inducible class II MHC expression on renal tubular epithelial cells derived from TGF-beta1 knockout (-/-) and wild-type (+/+) mice. IFN-gamma markedly upregulated class II MHC (I-A(b)) expression in both (-/-) and (+/+) tubular epithelial cells. Coincubation studies of (+/+) and (-/-) tubular epithelial cells with IFN-gamma+LPS, or pretreatment of these cells with TGF-beta1, revealed inhibition of IFN-gamma-induced I-A(b) mRNA and cell surface expression that occurred via a decrease in class II transactivator gene expression in both (+/+) and (-/-) tubular epithelial cells. In addition, ICAM-1 was constitutively expressed on both (+/+) and (-/-) tubular epithelial cells and was upregulated by IFN-gamma or IFN-gamma+LPS. ICAM-1 expression in (+/+) and (-/-) tubular epithelial cells, however, was decreased by TGF-beta1. Parallel analysis evaluating B7-1 expression detected low levels of B7-1 in unstimulated (+/+) and (-/-) tubular epithelial cells that were increased by IFN-gamma, LPS, and IFN-gamma+LPS. IFN-gamma+LPS-mediated upregulation of B7-1 was also blocked by pretreatment with TGF-beta1. Cytokine analysis detected significantly higher levels of TNF-alpha and MIP-1alpha mRNA in all treated (-/-) preparations than in (+/+) tubular epithelial cell controls. These studies demonstrate normal patterns of class II MHC, ICAM-1, and B7 expression in TGF-beta1 (-/-) tubular epithelial cells in response to IFN-gamma, LPS, and TGF-beta1. Upregulated cytokine expression at baseline and in response to proinflammatory mediators is apparent in (-/-) tubular epithelial cells, however, and suggests that dysregulation of cytokine expression in inflammatory responses may be a primary event in multifocal inflammation observed in TGF-beta1-deficient animals.
Collapse
Affiliation(s)
- Nazifa Banu
- Renal Electrolyte and Hypertension Division, Department of Medicine, Penn Center for the Molecular Studies of Kidney Diseases, University of Pennsylvania School of Medicine, Philadelphia, Pa, USA
| | | | | | | | | |
Collapse
|
10
|
Timoshanko JR, Holdsworth SR, Kitching AR, Tipping PG. IFN-gamma production by intrinsic renal cells and bone marrow-derived cells is required for full expression of crescentic glomerulonephritis in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4135-41. [PMID: 11937574 DOI: 10.4049/jimmunol.168.8.4135] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contribution of IFN-gamma from bone marrow (BM) and non-BM-derived cells to glomerular and cutaneous delayed-type hypersensitivity (DTH) was studied in mice. Chimeric IFN-gamma mice (IFN-gamma(+/+) BM chimera), in which IFN-gamma production was restricted to BM-derived cells, were created by transplanting normal C57BL/6 (wild-type (WT)) BM into irradiated IFN-gamma-deficient mice. BM IFN-gamma-deficient chimeric mice (IFN-gamma(-/-) BM chimera) were created by transplanting WT mice with IFN-gamma-deficient BM. WT and sham chimeric mice (WT mice transplanted with WT BM) developed crescentic glomerulonephritis (GN) with features of DTH (including glomerular T cell and macrophage infiltration) in response to an Ag planted in their glomeruli and skin DTH following subdermal Ag challenge. IFN-gamma-deficient mice showed significant protection from crescentic GN and reduced cutaneous DTH. IFN-gamma(+/+) BM chimeric and IFN-gamma(-/-) BM chimeric mice showed similar attenuation of crescentic GN as IFN-gamma-deficient mice, whereas cutaneous DTH was reduced only in IFN-gamma(-/-) BM chimeras. In crescentic GN, IFN-gamma was expressed by tubular cells and occasional glomerular cells and was colocalized with infiltrating CD8(+) T cells, but not with CD4(+) T cells or macrophages. Renal MHC class II expression was reduced in IFN-gamma(+/+) BM chimeric mice and was more severely reduced in IFN-gamma-deficient mice and IFN-gamma(-/-) BM chimeric mice. These studies show that IFN-gamma expression by both BM-derived cells and intrinsic renal cells is required for the development of crescentic GN, but IFN-gamma production by resident cells is not essential for the development of cutaneous DTH.
Collapse
Affiliation(s)
- Jennifer R Timoshanko
- Center for Inflammatory Diseases, Monash University, and Department of Medicine, Monash Medical Center, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
11
|
Kairaitis LK, Harris DCH. Tubular-interstitial interactions in proteinuric renal diseases. Nephrology (Carlton) 2001. [DOI: 10.1046/j.1440-1797.2001.00066.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Yamate J, Maeda M, Benn SJ, Laithwaite JE, Allan A, Ide M, Kuwamura M, Kotani T, Sakuma S, Lamarre J. Differential effects of transforming growth factor-beta1, a fibrogenic factor, on macrophage-like cells (HS-P) and myofibroblastic cells (MT-9) in vitro. Toxicol Pathol 2001; 29:483-91. [PMID: 11560254 DOI: 10.1080/01926230152500103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) produced by infiltrating macrophages plays a role in fibrotic disorders through the induction of myofibroblasts. To explore possible mechanisms by which TGF-beta1 may act in this context, we investigated effects of TGF-beta1 on macrophage-like (HS-P) and myofibroblastic (MT-9) cells, two novel cell lines developed by us. Immunocytochemically, the addition of TGF-beta1 (0, 0.1, 0.5, and 1.0 ng/ml) dose-dependently suppressed the expressions of antigens recognized by macrophage/histiocyte-specific antibodies (ED1 and ED2) in HS-P cells, whereas the addition concomitantly increased the number of anti-alpha-smooth muscle actin antibody-positive myofibroblastic cells, suggesting a possible phenotypical modulation of macrophages into myofibroblasts in the fibrotic lesions. By contrast, MT-9 cells did not show such immunophenotypical changes following TGF-beta1 addition. DNA synthesis, measured by tritiated thymidine-incorporation, was inhibited in a dose-dependent manner in MT-9 cells by TGF-beta1 addition (0, 0.1, 0.2, 0.5, 1.0, 5, and 10 ng/ml), but that in HS-P cells was unchanged. Northern blot analysis revealed that expressions of cell cycle-related early genes, c-jun and c-myc, were increased in HS-P cells after TGF-beta1 (1 ng/ml) addition, with c-jun showing peak expression prior to c-myc. By contrast, the peak expressions of c-jun and c-myc were delayed in TGF-beta1 (1 ng/ml)-added MT-9 cells, and their levels were less in MT-9 cells than in HS-P cells. Furthermore, TGF-beta1 (1 and 10 ng/ml) induced DNA laddering in MT-9 cells, but did not in HS-P cells. Based on these findings, it was speculated that TGF-beta1 could have induced G1 arrest in cell cycle and apoptosis in MT-9 cells. The present study showed that there were significant differences in the effects of TGF-beta1 between macrophage-like HS-P cells and myofibroblastic MT-9 cells, presumably depending on divergent susceptibilities to TGF-beta1 between both cell types. Because such cell types are key cells in the fibrogenesis, HS-P and MT-9 might be useful models for investigating the pathogenesis of fibrosis in vitro.
Collapse
Affiliation(s)
- J Yamate
- Department of Veterinary Pathology, Graduate School of Agriculture and Biological Science, Osaka Prefecture University, Sakai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Schena FP, Grandaliano G, Gesualdo L. The role of tubular cells in the progression of renal damage: guilty or innocent? Ren Fail 2001; 23:589-96. [PMID: 11499572 DOI: 10.1081/jdi-100104740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- F P Schena
- Department of Emergency and Organ Transplantation, University of Bari, Policlinico, Italy.
| | | | | |
Collapse
|
14
|
The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood 2000. [DOI: 10.1182/blood.v95.10.3223] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
Familial Mediterranean fever (FMF) is a recessive disorder characterized by episodes of fever and neutrophil-mediated serosal inflammation. We recently identified the gene causing FMF, designatedMEFV, and found it to be expressed in mature neutrophils, suggesting that it functions as an inflammatory regulator. To facilitate our understanding of the normal function of MEFV, we extended our previous studies. MEFV messenger RNA was detected by reverse transcriptase–polymerase chain reaction in bone marrow leukocytes, with differential expression observed among cells by in situ hybridization. CD34 hematopoietic stem-cell cultures induced toward the granulocytic lineage expressed MEFV at the myelocyte stage, concurrently with lineage commitment. The prepromyelocytic cell line HL60 expressed MEFV only at granulocytic and monocytic differentiation. MEFV was also expressed in the monocytic cell lines U937 and THP-1. Among peripheral blood leukocytes, MEFV expression was detected in neutrophils, eosinophils, and to varying degrees, monocytes. Consistent with the tissue specificity of expression, complete sequencing and analysis of upstream regulatory regions of MEFV revealed homology to myeloid-specific promoters and to more broadly expressed inflammatory promoter elements. In vitro stimulation of monocytes with the proinflammatory agents interferon (IFN) γ, tumor necrosis factor, and lipopolysaccharide induced MEFV expression, whereas the antiinflammatory cytokines interleukin (IL) 4, IL-10, and transforming growth factor β inhibited such expression. Induction by IFN-γ occurred rapidly and was resistant to cycloheximide. IFN- also induced MEFV expression. In granulocytes, MEFV was up-regulated by IFN-γ and the combination of IFN- and colchicine. These results refine understanding of MEFV by placing the gene in the myelomonocytic-specific proinflammatory pathway and identifying it as an IFN-γ immediate early gene.
Collapse
|
15
|
The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood 2000. [DOI: 10.1182/blood.v95.10.3223.010k26_3223_3231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Familial Mediterranean fever (FMF) is a recessive disorder characterized by episodes of fever and neutrophil-mediated serosal inflammation. We recently identified the gene causing FMF, designatedMEFV, and found it to be expressed in mature neutrophils, suggesting that it functions as an inflammatory regulator. To facilitate our understanding of the normal function of MEFV, we extended our previous studies. MEFV messenger RNA was detected by reverse transcriptase–polymerase chain reaction in bone marrow leukocytes, with differential expression observed among cells by in situ hybridization. CD34 hematopoietic stem-cell cultures induced toward the granulocytic lineage expressed MEFV at the myelocyte stage, concurrently with lineage commitment. The prepromyelocytic cell line HL60 expressed MEFV only at granulocytic and monocytic differentiation. MEFV was also expressed in the monocytic cell lines U937 and THP-1. Among peripheral blood leukocytes, MEFV expression was detected in neutrophils, eosinophils, and to varying degrees, monocytes. Consistent with the tissue specificity of expression, complete sequencing and analysis of upstream regulatory regions of MEFV revealed homology to myeloid-specific promoters and to more broadly expressed inflammatory promoter elements. In vitro stimulation of monocytes with the proinflammatory agents interferon (IFN) γ, tumor necrosis factor, and lipopolysaccharide induced MEFV expression, whereas the antiinflammatory cytokines interleukin (IL) 4, IL-10, and transforming growth factor β inhibited such expression. Induction by IFN-γ occurred rapidly and was resistant to cycloheximide. IFN- also induced MEFV expression. In granulocytes, MEFV was up-regulated by IFN-γ and the combination of IFN- and colchicine. These results refine understanding of MEFV by placing the gene in the myelomonocytic-specific proinflammatory pathway and identifying it as an IFN-γ immediate early gene.
Collapse
|