1
|
Kilgore KL, Anderson KD, Peckham PH. Neuroprosthesis for individuals with spinal cord injury. Neurol Res 2023; 45:893-905. [PMID: 32727296 PMCID: PMC9415059 DOI: 10.1080/01616412.2020.1798106] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 07/14/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Individuals who sustain a traumatic spinal cord injury (SCI) often have a loss of multiple body systems. Significant functional improvement can be gained by individual SCI through the use of neuroprostheses based on electrical stimulation. The most common actions produced are grasp, overhead reach, trunk posture, standing, stepping, bladder/bowel/sexual function, and respiratory functions. METHODS We review the fundamental principles of electrical stimulation, which are established, allowing stimulation to be safely delivered through implanted devices for many decades. We review four common clinical applications for SCI, including grasp/reach, standing/stepping, bladder/bowel function, and respiratory functions. Systems used to implement these functions have many common features, but are also customized based on the functional goals of each approach. Further, neuroprosthetic systems are customized based on the needs of each user. RESULTS & CONCLUSION The results to date show that implanted neuroprostheses can have a significant impact on the health, function, and quality of life for individuals with SCI. A key focus for the future is to make implanted neuroprostheses broadly available to the SCI population.
Collapse
Affiliation(s)
- Kevin L. Kilgore
- – MetroHealth System, Cleveland, Ohio
- – Case Western Reserve University, Cleveland, Ohio
- – VA Northeast Ohio Healthcare System, Cleveland, Ohio
| | - Kimberly D. Anderson
- – MetroHealth System, Cleveland, Ohio
- – Case Western Reserve University, Cleveland, Ohio
| | - P. Hunter Peckham
- – MetroHealth System, Cleveland, Ohio
- – Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
4
|
Ho CH, Triolo RJ, Elias AL, Kilgore KL, DiMarco AF, Bogie K, Vette AH, Audu ML, Kobetic R, Chang SR, Chan KM, Dukelow S, Bourbeau DJ, Brose SW, Gustafson KJ, Kiss ZHT, Mushahwar VK. Functional electrical stimulation and spinal cord injury. Phys Med Rehabil Clin N Am 2015; 25:631-54, ix. [PMID: 25064792 DOI: 10.1016/j.pmr.2014.05.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.
Collapse
Affiliation(s)
- Chester H Ho
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada.
| | - Ronald J Triolo
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Anastasia L Elias
- Chemical and Materials Engineering, W7-002 ECERF, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Kevin L Kilgore
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Anthony F DiMarco
- MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Kath Bogie
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Orthopaedics, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta T6G 2G8, Canada; Glenrose Rehabilitation Hospital, Alberta Health Services, 10230 - 111 Avenue, Edmonton, Alberta T5G 0B7, Canada
| | - Musa L Audu
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Rudi Kobetic
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Sarah R Chang
- Louis Stokes Cleveland VA Medical Center, Advanced Platform Technology Center, 151 AW/APT, 10701 East Boulevard, Cleveland, OH 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - K Ming Chan
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| | - Sean Dukelow
- Division of Physical Medicine & Rehabilitation, Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Dennis J Bourbeau
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Steven W Brose
- Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA; Ohio University Heritage College of Osteopathic Medicine, Grosvenor Hall, Athens, OH 45701, USA
| | - Kenneth J Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA; Cleveland FES Center, 11000 Cedar Avenue, Suite 230, Cleveland, OH 44106-3056, USA
| | - Zelma H T Kiss
- Department of Clinical Neurosciences, Foothills Medical Centre, Room 1195, 1403-29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Vivian K Mushahwar
- Division of Physical Medicine and Rehabilitation, Centre for Neuroscience, University of Alberta, 5005 Katz Group Centre, 11361-87 Avenue, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|