1
|
Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett 2015; 589:2869-76. [PMID: 25913784 DOI: 10.1016/j.febslet.2015.04.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
Abstract
Hox genes encode transcription factors necessary for patterning the major developing anterior to posterior embryonic axis. In addition, during vertebrate evolution, various subsets of this gene family were co-opted along with the emergence of novel body structures, such as the limbs or the external genitalia. The morphogenesis of these axial structures thus relies in part upon the precisely controlled transcription of specific Hox genes, a mechanism involving multiple long-range enhancers. Recently, it was reported that such regulatory mechanisms were largely shared between different developing tissues, though with some specificities, suggesting the recruitment of ancestral regulatory modalities from one tissue to another. The analysis of chromatin architectures at HoxD and HoxA loci revealed the existence of two flanking topologically associating domains (TADs), precisely encompassing the adjacent regulatory landscapes. Here, we discuss the function of these TADs in the control of Hox gene regulation and we speculate about their capacity to serve as structural frameworks for the emergence of novel enhancers. In this view, TADs may have been used as genomic niches to evolve pleiotropic regulations found at many developmental loci.
Collapse
|
2
|
Neufeld CJ. Modular phenotypic plasticity: divergent responses of barnacle penis and feeding leg form to variation in density and wave-exposure. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:254-62. [PMID: 21548076 DOI: 10.1002/jez.b.21395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 11/16/2010] [Accepted: 11/30/2010] [Indexed: 11/07/2022]
Abstract
Traits can evolve both in response to direct selection and in response to indirect selection on other linked traits. Although the evolutionary significance of coupled traits (e.g., through shared components of developmental pathways, or through competition for shared developmental resources) is now well accepted, we know comparatively little about how developmental coupling may restrict the independent responses of two or more phenotypically plastic traits in response to conflicting environmental cues. Such studies are important because coupled development, if present, could act as an important limit to the evolution of functionally independent plasticity in multiple traits. I tested whether developmental coupling can restrict the direction of plastic responses by studying how penis form and leg form--both highly plastic traits of barnacles--varied in response to differences in conspecific density and water velocity. Penis length and leg length in Balanus glandula varied in parallel with variation in wave-exposure but varied in opposite directions with variation in conspecific density. This study represents one of the rare tests of developmental coupling between multiple (demonstrably adaptive) plastic traits: Barnacle legs and penises appear to exhibit modular development that can respond concurrently--yet in independent directions--to conflicting environmental cues.
Collapse
Affiliation(s)
- Christopher J Neufeld
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Archambeault DR, Tomaszewski J, Joseph A, Hinton BT, Yao HHC. Epithelial-mesenchymal crosstalk in Wolffian duct and fetal testis cord development. Genesis 2009; 47:40-8. [PMID: 18979542 PMCID: PMC2877590 DOI: 10.1002/dvg.20453] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interactions between adjacent epithelial and mesenchymal tissues represent a highly conserved mechanism in embryonic organogenesis. In particular, the ability of the mesenchyme to instruct cellular differentiation of the epithelium is a fundamental requirement for the morphogenesis of tubular structures such as those found in the kidneys, lungs, and the developing male reproductive system. Once the tubular structure has formed, it receives signals from the mesenchyme, which can control proliferation, patterning, and differentiation of the epithelium inside the tube. However, the epithelium is not a "silent partner" in this process, and epithelium-derived factors are often required for proper maintenance of the mesenchymal compartment. Although much emphasis has been placed on the characterization of mesenchymally-derived signals required for epithelial differentiation, it is important to note that epithelial-mesenchymal interactions are a two-way street wherein each compartment requires the presence of the other for proper tubule morphogenesis and function. In this review, we discuss epithelial-mesenchymal interactions in the processes of Wolffian duct and fetal testis cord development using the mouse as a model organism and propose inhibin beta A as a conserved mesenchyme-derived regulator in these two male-specific tubular structures.
Collapse
Affiliation(s)
- Denise R. Archambeault
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois
| | - Jessica Tomaszewski
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois
| | - Avenel Joseph
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois
| | - Barry T. Hinton
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Humphrey Hung-Chang Yao
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Illinois
| |
Collapse
|
4
|
Pascual-Anaya J, D'Aniello S, Garcia-Fernàndez J. Unexpectedly large number of conserved noncoding regions within the ancestral chordate Hox cluster. Dev Genes Evol 2008; 218:591-7. [PMID: 18791732 DOI: 10.1007/s00427-008-0246-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
The single amphioxus Hox cluster contains 15 genes and may well resemble the ancestral chordate Hox cluster. We have sequenced the Hox genomic complement of the European amphioxus Branchiostoma lanceolatum and compared it to the American species, Branchiostoma floridae, by phylogenetic footprinting to gain insights into the evolution of Hox gene regulation in chordates. We found that Hox intergenic regions are largely conserved between the two amphioxus species, especially in the case of genes located at the 3' of the cluster, a trend previously observed in vertebrates. We further compared the amphioxus Hox cluster with the human HoxA, HoxB, HoxC, and HoxD clusters, finding several conserved noncoding regions, both in intergenic and intronic regions. This suggests that the regulation of Hox genes is highly conserved across chordates, consistent with the similar Hox expression patterns in vertebrates and amphioxus.
Collapse
Affiliation(s)
- Juan Pascual-Anaya
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | |
Collapse
|
5
|
Amemiya CT, Prohaska SJ, Hill-Force A, Cook A, Wasserscheid J, Ferrier DE, Pascual-Anaya J, Garcia-Fernàndez J, Dewar K, Stadler PF. The amphioxusHox cluster: characterization, comparative genomics, and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:465-77. [DOI: 10.1002/jez.b.21213] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Chen T, Li Q, Xu J, Ding K, Wang Y, Wang W, Li S, Shen Y. Mutation screening of BMP4, BMP7, HOXA4 and HOXB6 genes in Chinese patients with hypospadias. Eur J Hum Genet 2006; 15:23-8. [PMID: 17003840 DOI: 10.1038/sj.ejhg.5201722] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hypospadias, one of the most common congenital abnormalities of the male external genitalia with elusive etiology, are caused by a defect in the normal development of the urethra, foreskin and ventral aspect of the penis. Evidences indicate that BMP4 and BMP7, two of those major factors in a signaling cascade involved in controlling the embryonic urethral development, play central roles in the normal development of the urethra, and that HOXA4 and HOXB6 play important roles in the development of skin in various tissues at the time course of the urethral development. We directly sequenced all these exons and exon-intron boundaries of the four genes in 90 unrelated Chinese patients with hypospadias. Thirteen different heterozygous nucleotide variations were identified for the first time in the four genes in 14 of 90 cases. Of the 13 variations, eight are missense: c.619C>G (p.H207D), c.668G>A (p.R223H), c.751C>T (p.H251Y) in BMP4; c.907C>T (p.R303C) in BMP7; c.385G>T (p.G129C), c.869C>G (p.S290C) in HOXA4; c.124C>A (p.P42T), c.367T>C (p.C123R) in HOXB6. None of these variations were found in 380 control chromosomes. Amino-acid sequence alignments showed most of these changed amino acids are conserved across various vertebrate species. In a word, these findings, together with the indicated roles of the four genes, imply that it should not be random events for so many nucleotide variations found in the present study. Further functional studies are required to make the associations clear between these variants and hypospadias.
Collapse
Affiliation(s)
- Taiji Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, CAMS & PUMC, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Williams TM, Williams ME, Innis JW. Range of HOX/TALE superclass associations and protein domain requirements for HOXA13:MEIS interaction. Dev Biol 2005; 277:457-71. [PMID: 15617687 DOI: 10.1016/j.ydbio.2004.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 10/04/2004] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
AbdB-like HOX proteins form DNA-binding complexes with the TALE superclass proteins MEIS1A and MEIS1B, and trimeric complexes have been identified in nuclear extracts that include a second TALE protein, PBX. Thus, soluble DNA-independent protein-protein complexes exist in mammals. The extent of HOX/TALE superclass interactions, protein structural requirements, and sites of in vivo cooperative interaction have not been fully explored. We show that Hoxa13 and Hoxd13 expression does not overlap with that of Meis1-3 in the developing limb; however, coexpression occurs in the developing male and female reproductive tracts (FRTs). We demonstrate that both HOXA13 and HOXD13 associate with MEIS1B in mammalian and yeast cells, and that HOXA13 can interact with all MEIS proteins but not more diverged TALE superclass members. In addition, the C-terminal domains (CTDs) of MEIS1A (18 amino acids) and MEIS1B (93 amino acids) are necessary for HOXA13 interaction; for MEIS1B, this domain was also sufficient. We also show by yeast two-hybrid assay that MEIS proteins can interact with anterior HOX proteins, but for some, additional N-terminal MEIS sequences are required for interaction. Using deletion mutants of HOXA13 and HOXD13, we provide evidence for multiple HOX peptide domains interacting with MEIS proteins. These data suggest that HOX:MEIS interactions may extend to non-AbdB-like HOX proteins in solution and that differences may exist in the MEIS peptide domains utilized by different HOX groups. Finally, the capability of multiple HOX domains to interact with MEIS C-terminal sequences implies greater complexity of the HOX:MEIS protein-protein interactions and a larger role for variation of HOX amino-terminal sequences in specificity of function.
Collapse
Affiliation(s)
- Thomas M Williams
- Department of Human Genetics, University of Michigan, Med. Sci. II 4811, Ann Arbor, MI 48109-0618, USA
| | | | | |
Collapse
|
8
|
Dintilhac A, Bihan R, Guerrier D, Deschamps S, Pellerin I. A conserved non-homeodomain Hoxa9 isoform interacting with CBP is co-expressed with the 'typical' Hoxa9 protein during embryogenesis. Gene Expr Patterns 2004; 4:215-22. [PMID: 15161102 DOI: 10.1016/j.modgep.2003.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 08/25/2003] [Accepted: 08/25/2003] [Indexed: 11/22/2022]
Abstract
Various Hox genes are known to produce alternative transcripts encoding different isoforms whose physiological relevance during development is not yet understood. In this work, we analysed two different Hoxa9 mRNAs encoding a full-length protein (Hoxa9) or a protein lacking the homeodomain (Hoxa9T). First, we demonstrated that these transcripts are conserved from birds to mammals. We then showed that both transcripts are present throughout embryogenesis and that Hoxa9T transcript is particularly abundant in embryonic genital tract, kidney, forelimb and tail. We further found that both isoforms are able to interact with CBP, suggesting a competition between Hoxa9 and Hoxa9T with this protein.
Collapse
Affiliation(s)
- Agnès Dintilhac
- UMR 6061, Génétique et Développement, IFR 97, Université de Rennes 1, Campus Villejean, 2 avenue du Professeur Léon Bernard, CS34317, F-35043 Rennes, France
| | | | | | | | | |
Collapse
|
9
|
Meunier D, Aubin J, Jeannotte L. Perturbed thyroid morphology and transient hypothyroidism symptoms in Hoxa5 mutant mice. Dev Dyn 2003; 227:367-78. [PMID: 12815622 DOI: 10.1002/dvdy.10325] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Hox family of transcriptional regulators has been extensively studied for their role in axial and appendicular patterning. Genetic analyses have also unveiled Hox gene function in organogenesis and postnatal development. A phenotypical survey of the Hoxa5(-/-) mutant mice shows that the surviving mutants display symptoms of hypothyroidism, including transient growth retardation, and delayed eye opening and ear elevation. Thyroid gland morphogenesis initiates normally, but follicle formation and thyroglobulin processing are abnormal at late gestation. The expression of several molecular markers essential for thyroid gland formation and function, namely Nkx2.1, Pax8, and Titf2, is affected in the developing thyroid gland of Hoxa5(-/-) mutants. As a consequence, the expression of thyroid effector genes, including the thyroglobulin and thyroperoxidase genes, is perturbed. Our characterization reveals that the loss of Hoxa5 function transiently affects thyroid development in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Dominique Meunier
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Québec, Canada
| | | | | |
Collapse
|
10
|
Rosa-Molinar E, Burke AC. Starting from fins: parallelism in the evolution of limbs and genitalia: the fin-to-genitalia transition. Evol Dev 2002; 4:124-6. [PMID: 12004960 DOI: 10.1046/j.1525-142x.2002.01067.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organizers of the symposium Starting from Fins: Parallelism in the Evolution of Limbs and Genitalia intended it 1) to begin debates and discussions about parallelism, serial homology and transitions in development, as well as evolution of gene function and theories of origins and 2) to examine closely the potential significance of serial homology in understanding the evolution of morphology. This issue of Evolution and Development focuses on unpaired fin to genitalia transitions; the July-August issue will focus on paired fins to limbs, revisit the issues raised in the symposium, and point to future directions. Minelli's opening presentation introduced the central theme of the symposium by suggesting that body appendages such as arthropod and vertebrate limbs, chordate tails and external genitalia are evolutionarily divergent duplicates (paramorphs) of the main body axis. Suzuki's and Podlasek's presentations focused on the development of mammalian genitalia. Suzuki presented Suzuki et al investigations of the role of fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) as signaling molecules during murine external genitalia formation, and Podlasek presented Podlasek et al investigations to elucidate a rudimentary pathway of essential developmental genes and transcriptional regulators such as Hox genes, Sonic hedgehog (Shh), and Bone morphogenetic proteins 2 and 4 (BMP-2; BMP-4), found in the limb. Discussions and questions emerging from the symposium point to the need to recognize that claims of phylogenetic cause must be based on something more than similarities; research must focus on the extent to which comparisons can be taken as well as on the evolutionary significance of similarities.
Collapse
Affiliation(s)
- Eduardo Rosa-Molinar
- Julio Garcia Diaz Center for Investigations in Biology, University of Puerto Rico-Rio Piedras, 00931-3360, USA.
| | | |
Collapse
|