1
|
Kapsetaki SE, Fortunato A, Compton Z, Rupp SM, Nour Z, Riggs-Davis S, Stephenson D, Duke EG, Boddy AM, Harrison TM, Maley CC, Aktipis A. Is chimerism associated with cancer across the tree of life? PLoS One 2023; 18:e0287901. [PMID: 37384647 PMCID: PMC10309991 DOI: 10.1371/journal.pone.0287901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Chimerism is a widespread phenomenon across the tree of life. It is defined as a multicellular organism composed of cells from other genetically distinct entities. This ability to 'tolerate' non-self cells may be linked to susceptibility to diseases like cancer. Here we test whether chimerism is associated with cancers across obligately multicellular organisms in the tree of life. We classified 12 obligately multicellular taxa from lowest to highest chimerism levels based on the existing literature on the presence of chimerism in these species. We then tested for associations of chimerism with tumour invasiveness, neoplasia (benign or malignant) prevalence and malignancy prevalence in 11 terrestrial mammalian species. We found that taxa with higher levels of chimerism have higher tumour invasiveness, though there was no association between malignancy or neoplasia and chimerism among mammals. This suggests that there may be an important biological relationship between chimerism and susceptibility to tissue invasion by cancerous cells. Studying chimerism might help us identify mechanisms underlying invasive cancers and also could provide insights into the detection and management of emerging transmissible cancers.
Collapse
Affiliation(s)
- Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Angelo Fortunato
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Shawn M. Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Zaid Nour
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Skyelyn Riggs-Davis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
| | - Dylan Stephenson
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America
| | - Elizabeth G. Duke
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, United States of America
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Anthropology, University of California, Santa Barbara, CA, United States of America
| | - Tara M. Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States of America
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, United States of America
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Biodesign Institute, Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, United States of America
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, United States of America
- Department of Psychology, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
2
|
Kim WD, Mathavarajah S, Huber RJ. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Front Physiol 2022; 13:827435. [PMID: 35586714 PMCID: PMC9108976 DOI: 10.3389/fphys.2022.827435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-translationally regulated through neddylation, a process that conjugates the ubiquitin-like modifier protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. Recent comparative genomics studies revealed that CRLs and the CSN are highly conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba Dictyostelium discoideum, has been used for close to 100 years as a model organism for studying conserved cellular and developmental processes owing to its unique life cycle comprised of unicellular and multicellular phases. The organism is also recognized as an exceptional model system for studying cellular processes impacted by human diseases, including but not limited to, cancer and neurodegeneration. Recent work shows that the neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular development in D. discoideum, which supports previous work that revealed the cullin interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular and developmental processes during the D. discoideum life cycle. Here, we review the roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using this biomedical model system to further explore the evolutionarily conserved functions of cullins and neddylation.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
3
|
Tverskoi D, Gavrilets S. The evolution of germ-soma specialization under different genetic and environmental effects. J Theor Biol 2022; 534:110964. [PMID: 34838795 DOI: 10.1016/j.jtbi.2021.110964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022]
Abstract
Division of labor exists at different levels of biological organization - from cell colonies to human societies. One of the simplest examples of the division of labor in multicellular organisms is germ-soma specialization, which plays a key role in the evolution of organismal complexity. Here we formulate and study a general mathematical model exploring the emergence of germ-soma specialization in colonies of cells. We consider a finite population of colonies competing for resources. Colonies are of the same size and are composed by asexually reproducing haploid cells. Each cell can contribute to activity and fecundity of the colony, these contributions are traded-off. We assume that all cells within a colony are genetically identical but gene effects on fecundity and activity are influenced by variation in the microenvironment experienced by individual cells. Through analytical theory and evolutionary agent-based modeling we show that the shape of the trade-off relation between somatic and reproductive functions, the type and extent of variation in within-colony microenvironment, and, in some cases, the number of genes involved, are important predictors of the extent of germ-soma specialization. Specifically, increasing convexity of the trade-off relation, the number of different environmental gradients acting within a colony, and the number of genes (in the case of random microenvironmental effects) promote the emergence of germ-soma specialization. Overall our results contribute towards a better understanding of the role of genetic, environmental, and microenvironmental factors in the evolution of germ-soma specialization.
Collapse
Affiliation(s)
- Denis Tverskoi
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA; Center for the Dynamics of Social Complexity, University of Tennessee, Knoxville, TN 37996, USA; International Center of Decision Choice and Analysis, Higher School of Economics, Moscow 101000, Russian Federation.
| | - Sergey Gavrilets
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA; Center for the Dynamics of Social Complexity, University of Tennessee, Knoxville, TN 37996, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA; Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Hehmeyer J. Two potential evolutionary origins of the fruiting bodies of the dictyostelid slime moulds. Biol Rev Camb Philos Soc 2019; 94:1591-1604. [PMID: 30989827 DOI: 10.1111/brv.12516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Abstract
Dictyostelium discoideum and the other dictyostelid slime moulds ('social amoebae') are popular model organisms best known for their demonstration of sorocarpic development. In this process, many cells aggregate to form a multicellular unit that ultimately becomes a fruiting body bearing asexual spores. Several other unrelated microorganisms undergo comparable processes, and in some it is evident that their multicellular development evolved from the differentiation process of encystation. While it has been argued that the dictyostelid fruiting body had similar origins, it has also been proposed that dictyostelid sorocarpy evolved from the unicellular fruiting process found in other amoebozoan slime moulds. This paper reviews the developmental biology of the dictyostelids and other relevant organisms and reassesses the two hypotheses on the evolutionary origins of dictyostelid development. Recent advances in phylogeny, genetics, and genomics and transcriptomics indicate that further research is necessary to determine whether or not the fruiting bodies of the dictyostelids and their closest relatives, the myxomycetes and protosporangids, are homologous.
Collapse
|
5
|
Affiliation(s)
| | - D.S. Lamont
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
6
|
Noble LM, Holland LM, McLauchlan AJ, Andrianopoulos A. A Plastic Vegetative Growth Threshold Governs Reproductive Capacity in Aspergillus nidulans. Genetics 2016; 204:1161-1175. [PMID: 27672092 PMCID: PMC5105849 DOI: 10.1534/genetics.116.191122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Ontogenetic phases separating growth from reproduction are a common feature of cellular life. Long recognized for flowering plants and animals, early literature suggests this life-history component may also be prevalent among multicellular fungi. We establish the basis of developmental competence-the capacity to respond to induction of asexual development-in the filamentous saprotroph Aspergillus nidulans, describing environmental influences, including genotype-by-environment interactions among precocious mutants, gene expression associated with wild type and precocious competence acquisition, and the genetics of competence timing. Environmental effects are consistent with a threshold driven by metabolic rate and organism density, with pH playing a particularly strong role in determining competence timing. Gene expression diverges significantly over the competence window, despite a lack of overt morphological change, with differentiation in key metabolic, signaling, and cell trafficking processes. We identify five genes for which mutant alleles advance competence timing, including the conserved GTPase RasB (AN5832) and ambient pH sensor PalH (AN6886). In all cases examined, inheritance of competence timing is complex and non-Mendelian, with F1 progeny showing highly variable transgressive timing and dominant parental effects with a weak contribution from progeny genotype. Competence provides a new model for nutrient-limited life-cycle phases, and their elaboration from unicellular origins. Further work is required to establish the hormonal and bioenergetic basis of the trait across fungi, and underlying mechanisms of variable inheritance.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10012
| | - Linda M Holland
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, D04, Ireland
| | - Alisha J McLauchlan
- Genetics, Genomics and Development, School of BioSciences University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Development, School of BioSciences University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
7
|
Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates. PLoS Comput Biol 2016; 12:e1005042. [PMID: 27749898 PMCID: PMC5066942 DOI: 10.1371/journal.pcbi.1005042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with limited resources, and is consistent with the observed behaviors and forms of several aggregates of unicellular organisms. Unicellular organisms, when aggregated under limited resources, often exhibit behaviors akin to multicellular organisms, possibly without advanced regulation mechanisms, as observed in biofilms and bacterial colonies. Cells in an aggregate have to differentiate into several types that are specialized for different tasks, so that the growth rate should be enhanced by the division of labor among these cell types. To consider how a cell aggregate can acquire these properties, most theoretical studies have thus far assumed the fitness of an aggregate of cells and the ability of cell differentiation a priori. In contrast, we developed a dynamical-systems model consisting of cells without assuming predefined fitness. The model consists of catalytic-reaction networks for cellular growth. By extensive simulations and theoretical analysis of the model, we showed that cells growing under the condition of nutrient limitation and strong cell-cell interactions can differentiate with distinct chemical compositions. They achieve cooperative division of labor by exchanging the produced chemicals to attain a higher growth rate. The conditions for spontaneous cell differentiation and collective growth of cells are presented. The uncovered symbiotic differentiation and collective growth are akin to economic theory on division of labor and comparative advantage.
Collapse
|
8
|
Precarious development: the uncertain social life of cellular slime molds. Proc Natl Acad Sci U S A 2015; 112:2639-40. [PMID: 25713343 DOI: 10.1073/pnas.1500708112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
9
|
Urushihara H, Kuwayama H, Fukuhara K, Itoh T, Kagoshima H, Shin-I T, Toyoda A, Ohishi K, Taniguchi T, Noguchi H, Kuroki Y, Hata T, Uchi K, Mohri K, King JS, Insall RH, Kohara Y, Fujiyama A. Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation. BMC Genomics 2015; 16:80. [PMID: 25758444 PMCID: PMC4334915 DOI: 10.1186/s12864-015-1278-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/23/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation. RESULTS We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum. CONCLUSIONS The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns.
Collapse
Affiliation(s)
- Hideko Urushihara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Kensuke Fukuhara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | | | | | | | | | | | | | | | - Yoko Kuroki
- RIKEN Advanced Science Institute, Yokohama, Japan.
| | - Takashi Hata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Kyoko Uchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Kurato Mohri
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Jason S King
- Beatson Institute for Cancer Research, Glasgow, UK.
| | | | - Yuji Kohara
- National Institute of Genetics, Mishima, Japan.
| | - Asao Fujiyama
- National Institute of Genetics, Mishima, Japan.
- National Institute of Informatics, Tokyo, Japan.
| |
Collapse
|
10
|
Phillips JE, Huang E, Shaulsky G, Gomer RH. The putative bZIP transcription factor BzpN slows proliferation and functions in the regulation of cell density by autocrine signals in Dictyostelium. PLoS One 2011; 6:e21765. [PMID: 21760904 PMCID: PMC3131300 DOI: 10.1371/journal.pone.0021765] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/06/2011] [Indexed: 11/27/2022] Open
Abstract
The secreted proteins AprA and CfaD function as autocrine signals that inhibit cell proliferation in Dictyostelium discoideum, thereby regulating cell numbers by a negative feedback mechanism. We report here that the putative basic leucine zipper transcription factor BzpN plays a role in the inhibition of proliferation by AprA and CfaD. Cells lacking BzpN proliferate more rapidly than wild-type cells but do not reach a higher stationary density. Recombinant AprA inhibits wild-type cell proliferation but does not inhibit the proliferation of cells lacking BzpN. Recombinant CfaD also inhibits wild-type cell proliferation, but promotes the proliferation of cells lacking BzpN. Overexpression of BzpN results in a reduced cell density at stationary phase, and this phenotype requires AprA, CfaD, and the kinase QkgA. Conditioned media from high-density cells stops the proliferation of wild-type but not bzpN− cells and induces a nuclear localization of a BzpN-GFP fusion protein, though this localization does not require AprA or CfaD. Together, the data suggest that BzpN is necessary for some but not all of the effects of AprA and CfaD, and that BzpN may function downstream of AprA and CfaD in a signal transduction pathway that inhibits proliferation.
Collapse
Affiliation(s)
- Jonathan E. Phillips
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Eryong Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
West CM, Wang ZA, van der Wel H. A cytoplasmic prolyl hydroxylation and glycosylation pathway modifies Skp1 and regulates O2-dependent development in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1800:160-71. [PMID: 19914348 PMCID: PMC2873859 DOI: 10.1016/j.bbagen.2009.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 12/13/2022]
Abstract
The soil amoeba Dictyostelium is an obligate aerobe that monitors O(2) for informational purposes in addition to utilizing it for oxidative metabolism. Whereas low O(2) suffices for proliferation, a higher level is required for slugs to culminate into fruiting bodies, and O(2) influences slug polarity, slug migration, and cell-type proportioning. Dictyostelium expresses a cytoplasmic prolyl 4-hydroxylase (P4H1) known to mediate O(2)-sensing in animals, but lacks HIFalpha, a major hydroxylation target whose accumulation directly induces animal hypoxia-dependent transcriptional changes. The O(2)-requirement for culmination is increased by P4H1-gene disruption and reduced by P4H1 overexpression. A target of Dictyostelium P4H1 is Skp1, a subunit of the SCF-class of E3-ubiquitin ligases related to the VBC-class that mediates hydroxylation-dependent degradation of animal HIFalpha. Skp1 is a target of a novel cytoplasmic O-glycosylation pathway that modifies HyPro143 with a pentasaccharide, and glycosyltransferase mutants reveal that glycosylation intermediates have antagonistic effects toward P4H1 in O(2)-signaling. Current evidence indicates that Skp1 is the only glycosylation target in cells, based on metabolic labeling, biochemical complementation, and enzyme specificity studies. Bioinformatics studies suggest that the HyPro-modification pathway existed in the ancestral eukaryotic lineage and was retained in selected modern day unicellular organisms whose life cycles experience varying degrees of hypoxia. It is proposed that, in Dictyostelium and other protists including the agent for human toxoplasmosis Toxoplasma gondii, prolyl hydroxylation and glycosylation mediate O(2)-signaling in hierarchical fashion via Skp1 to control the proteome, directly via degradation rather than indirectly via transcription as found in animals.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 975 Northeast Tenth Street, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
12
|
Abstract
Most conspicuous organisms are multicellular and most multicellular organisms develop somatic cells to perform specific, nonreproductive tasks. The ubiquity of this division of labor suggests that it is highly advantageous. In this article I present a model to study the evolution of specialized cells. The model allows for unicellular and multicellular organisms that may contain somatic (terminally differentiated) cells. Cells contribute additively to a quantitative trait. The fitness of the organism depends on this quantitative trait (via a benefit function), the size of the organism, and the number of somatic cells. The model allows one to determine when somatic cells are advantageous and to calculate the optimum number (or fraction) of reproductive cells. I show that the fraction of reproductive cells is always surprisingly high. If somatic cells are very small, they can outnumber reproductive cells but their biomass is still less than the biomass of reproductive cells. I discuss the biology of primitive multicellular organisms with respect to the model predictions. I find a good agreement and outline how this work can be used to guide further quantitative studies of multicellularity.
Collapse
Affiliation(s)
- Martin Willensdorfer
- Program for Evolutionary Dynamics, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
13
|
Stout T, McFarland T, Appukuttan B. Suppression subtractive hybridization identifies novel transcripts in regenerating Hydra littoralis. BMB Rep 2007; 40:286-9. [PMID: 17394780 DOI: 10.5483/bmbrep.2007.40.2.286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite considerable interest in the biologic processes of regeneration and stem cell activation, little is known about the genes involved in these transformative events. In a Hydra littoralis model of regeneration, we employed a rapid shotgun suppression subtractive hybridization strategy to identify genes that are uniquely expressed in regenerating tissue. With an adaptor-PCR based technique, 16 candidate transcripts were identified, 15 were confirmed unique to mRNA isolated from hydra undergoing regeneration. Of these, 6 were undescribed in GenBank and allied expressed sequence tag (EST) databases (GenBank + EMBL + DDBJ + PDB and the Hydra EST database). BLAST analysis of these sequences identified remarkably similar sequences in anonymous ESTs found in a wide variety of animal species.
Collapse
Affiliation(s)
- Thomas Stout
- Casey Eye Institute, Oregon Health and Science University, 3375 SW Terwilliger Blvd, Portland, OR 97239, USA
| | | | | |
Collapse
|
14
|
Heyland A, Hodin J, Reitzel AM. Hormone signaling in evolution and development: a non-model system approachs. Bioessays 2004; 27:64-75. [PMID: 15612033 DOI: 10.1002/bies.20136] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cooption and modularity are informative concepts in evolutionary developmental biology. Genes function within complex networks that act as modules in development. These modules can then be coopted in various functional and evolutionary contexts. Hormonal signaling, the main focus of this review, has a modular character. By regulating the activities of genes, proteins and other cellular molecules, a hormonal signal can have major effects on physiological and ontogenetic processes within and across tissues over a wide spatial and temporal scale. Because of this property, we argue that hormones are frequently involved in the coordination of life history transitions (LHTs) and their evolution (LHE). Finally, we promote the usefulness of a comparative, non-model system approach towards understanding how hormones function and guide development and evolution, highlighting thyroid hormone function in echinoids as an example.
Collapse
Affiliation(s)
- Andreas Heyland
- Department of Zoology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
15
|
Abstract
Following the origin of multicellularity in many groups of primitive organisms there evolved more than one cell type. It has been assumed that this early differentiation is related to size the larger the organism the more cell types. Here two very different kinds of organisms are considered: the volvocine algae that become multicellular by growth, and the cellular slime moulds that become multicellular by aggregation. In both cases there are species that have only one cell type and others that have two. It has been possible to show that there is a perfect correlation with size: the forms with two cell types are significantly larger than those with one. Also in both groups there are forms of intermediate size that will vary from one to two cell types depending on the size of the individuals, suggesting a form of quorum sensing. These observations reinforce the view that size plays a critical role in influencing the degree of differentiation.
Collapse
Affiliation(s)
- J T Bonner
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|