1
|
Fayad AI, Buamscha DG, Ciapponi A. Timing of kidney replacement therapy initiation for acute kidney injury. Cochrane Database Syst Rev 2022; 11:CD010612. [PMID: 36416787 PMCID: PMC9683115 DOI: 10.1002/14651858.cd010612.pub3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common condition among patients in intensive care units (ICUs) and is associated with high numbers of deaths. Kidney replacement therapy (KRT) is a blood purification technique used to treat the most severe forms of AKI. The optimal time to initiate KRT so as to improve clinical outcomes remains uncertain. This is an update of a review first published in 2018. This review complements another Cochrane review by the same authors: Intensity of continuous renal replacement therapy for acute kidney injury. OBJECTIVES To assess the effects of different timing (early and standard) of KRT initiation on death and recovery of kidney function in critically ill patients with AKI. SEARCH METHODS We searched the Cochrane Kidney and Transplant's Specialised Register to 4 August 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Register, ClinicalTrials and LILACS to 1 August 2022. SELECTION CRITERIA We included all randomised controlled trials (RCTs). We included all patients with AKI in the ICU regardless of age, comparing early versus standard KRT initiation. For safety and cost outcomes, we planned to include cohort studies and non-RCTs. DATA COLLECTION AND ANALYSIS Data were extracted independently by two authors. The random-effects model was used, and results were reported as risk ratios(RR) for dichotomous outcomes and mean difference(MD) for continuous outcomes, with 95% confidence intervals (CI). MAIN RESULTS We included 12 studies enrolling 4880 participants. Overall, most domains were assessed as being at low or unclear risk of bias. Compared to standard treatment, early KRT initiation may have little to no difference on the risk of death at day 30 (12 studies, 4826 participants: RR 0.97,95% CI 0.87 to 1.09; I²= 29%; low certainty evidence), and death after 30 days (7 studies, 4534 participants: RR 0.99, 95% CI 0.92 to 1.07; I² = 6%; moderate certainty evidence). Early KRT initiation may make little or no difference to the risk of death or non-recovery of kidney function at 90 days (6 studies, 4011 participants: RR 0.91, 95% CI 0.74 to 1.11; I² = 66%; low certainty evidence); CIs included both benefits and harms. Low certainty evidence showed early KRT initiation may make little or no difference to the number of patients who were free from KRT (10 studies, 4717 participants: RR 1.07, 95% CI 0.94 to1.22; I² = 55%) and recovery of kidney function among survivors who were free from KRT after day 30 (10 studies, 2510 participants: RR 1.02, 95% CI 0.97 to 1.07; I² = 69%) compared to standard treatment. High certainty evidence showed early KRT initiation increased the risk of hypophosphataemia (1 study, 2927 participants: RR 1.80, 95% CI 1.33 to 2.44), hypotension (5 studies, 3864 participants: RR 1.54, 95% CI 1.29 to 1.85; I² = 0%), cardiac-rhythm disorder (6 studies, 4483 participants: RR 1.35, 95% CI 1.04 to 1.75; I² = 16%), and infection (5 studies, 4252 participants: RR 1.33, 95% CI 1.00 to 1.77; I² = 0%); however, it is uncertain whether early KRT initiation increases or reduces the number of patients who experienced any adverse events (5 studies, 3983 participants: RR 1.23, 95% CI 0.90 to 1.68; I² = 91%; very low certainty evidence). Moderate certainty evidence showed early KRT initiation probably reduces the number of days in hospital (7 studies, 4589 participants: MD-2.45 days, 95% CI -4.75 to -0.14; I² = 10%) and length of stay in ICU (5 studies, 4240 participants: MD -1.01 days, 95% CI -1.60 to -0.42; I² = 0%). AUTHORS' CONCLUSIONS Based on mainly low to moderate certainty of the evidence, early KRT has no beneficial effect on death and may increase the recovery of kidney function. Earlier KRT probably reduces the length of ICU and hospital stay but increases the risk of adverse events. Further adequate-powered RCTs using robust and validated tools that complement clinical judgement are needed to define the optimal time of KRT in critical patients with AKI in order to improve their outcomes. The surgical AKI population should be considered in future research.
Collapse
Affiliation(s)
- Alicia Isabel Fayad
- Pediatric Nephrology, Ricardo Gutierrez Children's Hospital, Buenos Aires, Argentina
| | - Daniel G Buamscha
- Pediatric Critical Care Unit, Juan Garrahan Children's Hospital, Buenos Aires, Argentina
| | - Agustín Ciapponi
- Argentine Cochrane Centre, Institute for Clinical Effectiveness and Health Policy (IECS-CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Negi S, Ohya M, Shigematsu T. Renal Replacement Therapy in AKI. ACUTE KIDNEY INJURY AND REGENERATIVE MEDICINE 2020:239-254. [DOI: 10.1007/978-981-15-1108-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Fayad AII, Buamscha DG, Ciapponi A. Timing of renal replacement therapy initiation for acute kidney injury. Cochrane Database Syst Rev 2018; 12:CD010612. [PMID: 30560582 PMCID: PMC6517263 DOI: 10.1002/14651858.cd010612.pub2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common condition among patients in intensive care units (ICUs), and is associated with high death. Renal replacement therapy (RRT) is a blood purification technique used to treat the most severe forms of AKI. The optimal time to initiate RRT so as to improve clinical outcomes remains uncertain.This review complements another Cochrane review by the same authors: Intensity of continuous renal replacement therapy for acute kidney injury. OBJECTIVES To assess the effects of different timing (early and standard) of RRT initiation on death and recovery of kidney function in critically ill patients with AKI. SEARCH METHODS We searched the Cochrane Kidney and Transplant's Specialised Register to 23 August 2018 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. We also searched LILACS to 11 September 2017. SELECTION CRITERIA We included all randomised controlled trials (RCTs). We included all patients with AKI in ICU regardless of age, comparing early versus standard RRT initiation. For safety and cost outcomes we planned to include cohort studies and non-RCTs. DATA COLLECTION AND ANALYSIS Data were extracted independently by two authors. The random-effects model was used and results were reported as risk ratios (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes, with 95% confidence intervals (CI). MAIN RESULTS We included five studies enrolling 1084 participants. Overall, most domains were assessed as being at low or unclear risk of bias. Compared to standard treatment, early initiation may reduce the risk of death at day 30, although the 95% CI does not rule out an increased risk (5 studies, 1084 participants: RR 0.83, 95% CI 0.61 to 1.13; I2 = 52%; low certainty evidence); and probably reduces the death after 30 days post randomisation (4 studies, 1056 participants: RR 0.92, 95% CI 0.76 to 1.10; I2= 29%; moderate certainty evidence); however in both results the CIs included a reduction and an increase of death. Earlier start may reduce the risk of death or non-recovery kidney function (5 studies, 1076 participants: RR 0.83, 95% CI 0.66 to 1.05; I2= 54%; low certainty evidence). Early strategy may increase the number of patients who were free of RRT after RRT discontinuation (5 studies, 1084 participants: RR 1.13, 95% CI 0.91 to 1.40; I2= 58%; low certainty evidence) and probably slightly increases the recovery of kidney function among survivors who discontinued RRT after day 30 (5 studies, 572 participants: RR 1.03, 95% CI 1.00 to 1.06; I2= 0%; moderate certainty evidence) compared to standard; however the lower limit of CI includes the null effect. Early RRT initiation increased the number of patients who experienced adverse events (4 studies, 899 participants: RR 1.10, 95% CI 1.03 to 1.16; I2 = 0%; high certainty evidence). Compared to standard, earlier RRT start may reduce the number of days in ICU (4 studies, 1056 participants: MD -1.78 days, 95% CI -3.70 to 0.13; I2 = 90%; low certainty evidence), but the CI included benefit and harm. AUTHORS' CONCLUSIONS Based mainly on low quality of evidence identified, early RRT may reduce the risk of death and may improve the recovery of kidney function in critically patients with AKI, however the 95% CI indicates that early RRT might worsen these outcomes. There was an increased risk of adverse events with early RRT. Further adequate-powered RCTs using appropriate criteria to define the optimal time of RRT are needed to reduce the imprecision of the results.
Collapse
Affiliation(s)
- Alicia Isabel I Fayad
- Ricardo Gutierrez Children's HospitalPediatric NephrologyInstitute for Clinical Effectiveness and Health PolicyLos Incas Av 4174Buenos AiresArgentina1427
| | - Daniel G Buamscha
- Juan Garrahan Children's HospitalPediatric Critical Care UnitCombate de Los Pozoz Y PichinchaBuenos AiresArgentina
| | - Agustín Ciapponi
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreDr. Emilio Ravignani 2024Buenos AiresArgentinaC1414CPV
| |
Collapse
|
4
|
Doi K, Nishida O, Shigematsu T, Sadahiro T, Itami N, Iseki K, Yuzawa Y, Okada H, Koya D, Kiyomoto H, Shibagaki Y, Matsuda K, Kato A, Hayashi T, Ogawa T, Tsukamoto T, Noiri E, Negi S, Kamei K, Kitayama H, Kashihara N, Moriyama T, Terada Y. The Japanese Clinical Practice Guideline for acute kidney injury 2016. RENAL REPLACEMENT THERAPY 2018. [DOI: 10.1186/s41100-018-0177-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
5
|
Doi K, Nishida O, Shigematsu T, Sadahiro T, Itami N, Iseki K, Yuzawa Y, Okada H, Koya D, Kiyomoto H, Shibagaki Y, Matsuda K, Kato A, Hayashi T, Ogawa T, Tsukamoto T, Noiri E, Negi S, Kamei K, Kitayama H, Kashihara N, Moriyama T, Terada Y. The Japanese clinical practice guideline for acute kidney injury 2016. Clin Exp Nephrol 2018; 22:985-1045. [PMID: 30039479 PMCID: PMC6154171 DOI: 10.1007/s10157-018-1600-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute kidney injury (AKI) is a syndrome which has a broad range of etiologic factors depending on different clinical settings. Because AKI has significant impacts on prognosis in any clinical settings, early detection and intervention is necessary to improve the outcomes of AKI patients. This clinical guideline for AKI was developed by a multidisciplinary approach with nephrology, intensive care medicine, blood purification, and pediatrics. Of note, clinical practice for AKI management which was widely performed in Japan was also evaluated with comprehensive literature search.
Collapse
Affiliation(s)
- Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | - Tomohito Sadahiro
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Noritomo Itami
- Department of Surgery, Kidney Center, Nikko Memorial Hospital, Hokkaido, Japan
| | - Kunitoshi Iseki
- Clinical Research Support Center, Tomishiro Central Hospital, Okinawa, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirokazu Okada
- Department of Nephrology and General Internal Medicine, Saitama Medical University, Saitama, Japan
| | - Daisuke Koya
- Division of Anticipatory Molecular Food Science and Technology, Department of Diabetology and Endocrinology, Kanazawa Medical University, Kanawaza, Ishikawa, Japan
| | - Hideyasu Kiyomoto
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yugo Shibagaki
- Division of Nephrology and Hypertension, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kenichi Matsuda
- Department of Emergency and Critical Care Medicine, University of Yamanashi School of Medicine, Yamanashi, Japan
| | - Akihiko Kato
- Blood Purification Unit, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Terumasa Hayashi
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, Osaka, Japan
| | - Tomonari Ogawa
- Nephrology and Blood Purification, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tatsuo Tsukamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Shigeo Negi
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | | | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Okayama, Japan
| | - Toshiki Moriyama
- Health Care Division, Health and Counseling Center, Osaka University, Osaka, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
6
|
Doi K, Nishida O, Shigematsu T, Sadahiro T, Itami N, Iseki K, Yuzawa Y, Okada H, Koya D, Kiyomoto H, Shibagaki Y, Matsuda K, Kato A, Hayashi T, Ogawa T, Tsukamoto T, Noiri E, Negi S, Kamei K, Kitayama H, Kashihara N, Moriyama T, Terada Y. The Japanese Clinical Practice Guideline for acute kidney injury 2016. J Intensive Care 2018; 6:48. [PMID: 30123509 PMCID: PMC6088399 DOI: 10.1186/s40560-018-0308-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome which has a broad range of etiologic factors depending on different clinical settings. Because AKI has significant impacts on prognosis in any clinical settings, early detection and intervention are necessary to improve the outcomes of AKI patients. This clinical guideline for AKI was developed by a multidisciplinary approach with nephrology, intensive care medicine, blood purification, and pediatrics. Of note, clinical practice for AKI management which was widely performed in Japan was also evaluated with comprehensive literature search.
Collapse
Affiliation(s)
- Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Aichi Japan
| | | | - Tomohito Sadahiro
- Department of Emergency and Critical Care Medicine, Tokyo Women’s Medical University Yachiyo Medical Center, Chiba, Japan
| | - Noritomo Itami
- Kidney Center, Department of Surgery, Nikko Memorial Hospital, Hokkaido, Japan
| | - Kunitoshi Iseki
- Clinical Research Support Center, Tomishiro Central Hospital, Okinawa, Japan
| | - Yukio Yuzawa
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Aichi Japan
| | - Hirokazu Okada
- Department of Nephrology and General Internal Medicine, Saitama Medical University, Saitama, Japan
| | - Daisuke Koya
- Division of Anticipatory Molecular Food Science and Technology, Department of Diabetology and Endocrinology, Kanazawa Medical University, Kanawaza, Ishikawa Japan
| | - Hideyasu Kiyomoto
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yugo Shibagaki
- Division of Nephrology and Hypertension, St. Marianna University School of Medicine, Kawasaki, Kanagawa Japan
| | - Kenichi Matsuda
- Department of Emergency and Critical Care Medicine, University of Yamanashi School of Medicine, Yamanashi, Japan
| | - Akihiko Kato
- Blood Purification Unit, Hamamatsu University Hospital, Hamamatsu, Japan
| | - Terumasa Hayashi
- Department of Kidney Disease and Hypertension, Osaka General Medical Center, Osaka, Japan
| | - Tomonari Ogawa
- Nephrology and Blood Purification, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tatsuo Tsukamoto
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Shigeo Negi
- Department of Nephrology, Wakayama Medical University, Wakayama, Japan
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | | | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Okayama, Japan
| | - Toshiki Moriyama
- Health Care Division, Health and Counseling Center, Osaka University, Osaka, Japan
| | - Yoshio Terada
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku, 783-8505 Japan
| |
Collapse
|
7
|
Negi S, Koreeda D, Kobayashi S, Iwashita Y, Shigematu T. Renal replacement therapy for acute kidney injury. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0043-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Vinsonneau C, Allain-Launay E, Blayau C, Darmon M, Ducheyron D, Gaillot T, Honore PM, Javouhey E, Krummel T, Lahoche A, Letacon S, Legrand M, Monchi M, Ridel C, Robert R, Schortgen F, Souweine B, Vaillant P, Velly L, Osman D, Van Vong L. Renal replacement therapy in adult and pediatric intensive care : Recommendations by an expert panel from the French Intensive Care Society (SRLF) with the French Society of Anesthesia Intensive Care (SFAR) French Group for Pediatric Intensive Care Emergencies (GFRUP) the French Dialysis Society (SFD). Ann Intensive Care 2015; 5:58. [PMID: 26714808 PMCID: PMC4695466 DOI: 10.1186/s13613-015-0093-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022] Open
Abstract
Acute renal failure (ARF) in critically ill patients is currently very frequent and requires renal replacement therapy (RRT) in many patients. During the last 15 years, several studies have considered important issues regarding the use of RRT in ARF, like the time to initiate the therapy, the dialysis dose, the types of catheter, the choice of technique, and anticoagulation. However, despite an abundant literature, conflicting results do not provide evidence on RRT implementation. We present herein recommendations for the use of RRT in adult and pediatric intensive care developed with the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system by an expert group of French Intensive Care Society (SRLF), with the participation of the French Society of Anesthesia and Intensive Care (SFAR), the French Group for Pediatric Intensive Care and Emergencies (GFRUP), and the French Dialysis Society (SFD). The recommendations cover 4 fields: criteria for RRT initiation, technical aspects (access routes, membranes, anticoagulation, reverse osmosis water), practical aspects (choice of the method, peritoneal dialysis, dialysis dose, adjustments), and safety (procedures and training, dialysis catheter management, extracorporeal circuit set-up). These recommendations have been designed on a practical point of view to provide guidance for intensivists in their daily practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patrick M Honore
- Intensive Care Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Etienne Javouhey
- Réanimation pédiatrique spécialisée, CHU Lyon, 69677, Bron, France.
| | | | | | | | | | - Mehran Monchi
- Réanimation polyvalente, CH Melun, 77000, Melun, France.
| | | | | | | | | | | | | | - David Osman
- CHU Bicêtre, 94, Le Kremlin Bicêtre, France.
| | - Ly Van Vong
- Réanimation polyvalente, CH Melun, 77000, Melun, France.
| |
Collapse
|
9
|
Épuration extrarénale en réanimation adulte et pédiatrique. Recommandations formalisées d’experts sous l’égide de la Société de réanimation de langue française (SRLF), avec la participation de la Société française d’anesthésie-réanimation (Sfar), du Groupe francophone de réanimation et urgences pédiatriques (GFRUP) et de la Société francophone de dialyse (SFD). ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13546-014-0917-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Krasteva N, Seifert B, Hopp M, Malsch G, Albrecht W, Altankov G, Groth T. Membranes for biohybrid liver support: the behaviour of C3A hepatoblastoma cells is dependent on the composition of acrylonitrile copolymers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:1-22. [PMID: 15796302 DOI: 10.1163/1568562052843348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Co-polymers based on acrylonitrile, N-vinylpyrrolidone, aminoethylmethacrylate and sodium methallylsulfonate were used to prepare flat membranes by phase inversion. The surface properties of membranes were characterised by water contact angle measurements, atomic force microscopy and X-ray photoelectron spectroscopy (XPS). Membrane permeability was estimated by porosity measurements with water as test liquid. Human C3A hepatoblastoma cells were plated on these materials. Cell-material interaction was characterised by overall cell morphology, formation of focal adhesion contacts and intercellular junctions. Furthermore, cell proliferation was measured and compared with the functional activity of cells as indicated by 7-ethoxycoumarin-O-deethylation. More hydrophilic materials reduced spreading of cells, formation of focal adhesion and subsequent proliferation while homotypic cell adhesion was facilitated in correlation with stronger expressions of intercellular junctions and improved functional activity. In contrast, membranes with stronger adhesivity enhanced cell proliferation but reduced the functional activity of cells. It was concluded that the co-polymerisation of acrylonitrile with hydrophilic co-monomers, such as N-vinylpyrrolidone, could be used to tailor membrane materials for the application in biohybrid liver support systems.
Collapse
Affiliation(s)
- N Krasteva
- Institute of Biophysics, Bulgarian Academy of Sciences, Str. Acad. G. Bonchev, bl. 21, BG-1113 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND Acute renal failure (ARF) is associated with substantial morbidity and mortality. Some studies have reported a survival advantage among patients dialyzed with biocompatible membranes (BCM) compared to bioincompatible membranes (BICM). These findings were not consistently observed in subsequent studies. OBJECTIVES To ascertain whether the use of BCM confers an advantage in either survival or recovery of renal function over the use of BICM in adult patients with ARF requiring intermittent hemodialysis. SEARCH STRATEGY We searched the Cochrane Central Register of Controlled Trials (CENTRAL, in The Cochrane Library), MEDLINE (from 1966), EMBASE (from 1980), the Mexican Index of Latin American Biomedical Journals IMBIOMED (from 1990), the Latin American and Caribbean Health Sciences Literature Database LILACS (from 1982), and reference lists of articles. Search date: January 2007 SELECTION CRITERIA Randomized and quasi-randomized controlled trials comparing the use of a BCM with a BICM in patients > 18 years of age with ARF requiring intermittent hemodialysis. DATA COLLECTION AND ANALYSIS Two authors extracted the data independently. Cellulose-derived dialysis membranes were classified as BICM, and synthetic dialyzers were considered as BCM. The main outcomes were all-cause mortality and recovery of renal function by type of dialyzer. We further explored these outcomes according to the flux properties (high-flux or low-flux) of each of these dialyzers. A meta-analysis was conducted by combining data using a random-effects model. MAIN RESULTS Ten studies were included in the primary analysis of mortality, with a total of 1100 patients. None of the pooled risk ratios (RRs) reached statistical significance. The pooled RR for mortality was 0.93 (95% confidence interval (CI) 0.81 to 1.07). The overall RR for recovery of renal function, which was inclusive of 1038 patients from nine studies, was 1.09 (95% CI 0.90 to 1.31). The pooled RR for mortality by dialyzer flux property was 1.05 (95% CI 0.81 to 1.37). The pooled RR for recovery of renal function by flux property was 1.30 (95% CI 0.83 to 2.02). A meta-analysis of mortality among kidney transplant recipients was not possible, however the analysis of recovery of renal function in this patient population revealed an RR of 1.05 (95% CI 0.87 to 1.26). Results of sensitivity analyses did not differ significantly from the primary analyses. AUTHORS' CONCLUSIONS There is no demonstrable clinical advantage to the use of BCM versus BICM in patients with ARF who require intermittent hemodialysis.
Collapse
Affiliation(s)
- Alvaro Alonso
- University of Massachusetts Medical CenterDepartment of Medicine, Division of Cardiovascular MedicineUniversity of Massachusetts Medical School55 Lake Avenue NorthWorcesterMAUSA01655
| | - Joseph Lau
- Tufts Medical CentreNew England Medical Centre/Tufts Evidence‐based Practice Center Institute for Clinical Research and Health Policy Studies800 Washington StreetBox 63BostonMAUSA02111
| | - Bertrand L Jaber
- Caritas St. Elizabeth's Medical CenterDepartment of Medicine736 Cambridge StreetBostonMAUSA02135
| | | |
Collapse
|
12
|
Continuous Renal Replacement Therapy. Crit Care Med 2008. [DOI: 10.1016/b978-032304841-5.50021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Affiliation(s)
- N Suren Kanagasundaram
- Freeman Hospital, High Heaton, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne
| |
Collapse
|
14
|
Abstract
BACKGROUND Acute renal failure (ARF) is associated with substantial morbidity and mortality. Some trials have reported a survival advantage among patients dialyzed with biocompatible membranes (BCM) compared to bioincompatible membranes (BICM). These findings were not consistently observed in subsequent studies. OBJECTIVES To ascertain whether the use of BCM confers an advantage in either survival or recovery of renal function over the use of BICM in adult patients with ARF requiring intermittent hemodialysis. SEARCH STRATEGY We searched the Cochrane Central Register of Controlled Trials (CENTRAL, in The Cochrane Library - Issue 1, 2004), MEDLINE (1966 to January 2004), EMBASE (1980 to January 2004), the Mexican Index of Latin American Biomedical Journals IMBIOMED (1990 to January 2004), the Latin American and Caribbean Health Sciences Literature Database LILACS (1982 to January 2004), and reference lists of articles. SELECTION CRITERIA Randomized and quasi-randomized controlled trials comparing the use of a BCM with a BICM in patients > 18 years of age with ARF requiring intermittent hemodialysis. DATA COLLECTION AND ANALYSIS Two authors extracted the data independently. Cellulose-derived dialysis membranes were classified as BICM, and synthetic dialyzers were considered as BCM. The main outcomes were all-cause mortality and recovery of renal function by type of dialyzer. We further explored these outcomes according to the flux properties (high-flux or low-flux) of each of these dialyzers. A meta-analysis was conducted by combining data using a random-effects model. MAIN RESULTS Nine studies were included in the primary analysis of mortality, with a total of 1062 patients. None of the pooled RR's reached statistical significance. The pooled relative risk (RR) for mortality was 0.93 (95% confidence interval (CI) = 0.81 to 1.07). The overall RR for recovery of renal function, inclusive of 1038 patients from nine studies was 1.09 (95% CI 0.90 to 1.31). The pooled RR for mortality by dialyzer flux property was 1.03 (95% CI 0.82 to 1.30). The RR for recovery of renal function by flux property was 0.85 (95% CI 0.55 to 1.31). A meta-analysis of mortality of kidney transplant recipients was not possible, but the analysis of recovery of renal function in this patient population was 1.09 (95% CI 0.91to 1.31). Results of sensitivity analyses did not differ significantly from the primary analyses. AUTHORS' CONCLUSIONS There is no demonstrable clinical advantage to the use of BCM versus BICM in patients with ARF who require intermittent hemodialysis.
Collapse
|
15
|
Liu JP, Gluud LL, Als-Nielsen B, Gluud C. Artificial and bioartificial support systems for liver failure. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2004. [PMID: 14974025 DOI: 10.1002/14651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Artificial and bioartificial liver support systems may 'bridge' patients with acute or acute-on-chronic liver failure to liver transplantation or recovery. OBJECTIVES To evaluate beneficial and harmful effects of artificial and bioartificial support systems for acute and acute-on-chronic liver failure. SEARCH STRATEGY Trials were identified through The Cochrane Hepato-Biliary Group Controlled Trials Register (September 2002), The Cochrane Central Register of Controlled Trials on The Cochrane Library (Issue 3, 2002), MEDLINE (1966 - September 2002), EMBASE (1985 - September 2002), and The Chinese Biomedical Database (September 2002), manual searches of bibliographies and journals, authors of trials, and pharmaceutical companies. SELECTION CRITERIA Randomised clinical trials on artificial or bioartificial support systems for acute or acute on-chronic liver failure were included irrespective of blinding, publication status, or language. Non-randomised studies were included in explorative analyses. DATA COLLECTION AND ANALYSIS Data were extracted independently by three reviewers. Results were presented as relative risks (RR) with 95% confidence intervals (CI). Sources of heterogeneity were explored through sensitivity analyses and meta-regression. The primary outcome was mortality. MAIN RESULTS Twelve trials on artificial or bioartificial support systems versus standard medical therapy (483 patients) and two trials comparing different artificial support systems (105 patients) were included. Most trials had unclear methodological quality. Compared to standard medical therapy, support systems had no significant effect on mortality (RR 0.86; 95% CI 0.65-1.12) or bridging to liver transplantation (RR 0.87; 95% CI 0.73-1.05), but a significant beneficial effect on hepatic encephalopathy (RR 0.67; 95% CI 0.52-0.86). Meta-regression indicated that the effect of support systems depended on the type of liver failure (P = 0.03). In subgroup analyses, artificial support systems appeared to reduce mortality by 33% in acute-on-chronic liver failure (RR 0.67; 95% CI 0.51-0.90), but not in acute liver failure (RR 0.95; 95% CI 0.71-1.29). Two trials comparing artificial support systems showed significant mortality reductions with intermittent versus continuous haemofiltration (RR 0.58; 95% CI 0.36-0.94) and no significant difference between five versus ten hours of charcoal haemoperfusion (RR 1.03; 95% CI 0.65-1.62). The incidence of adverse events was inconsistently reported. REVIEWER'S CONCLUSIONS This Review indicates that artificial support systems may reduce mortality in acute-on-chronic liver failure. Artificial and bioartificial support systems did not appear to affect mortality in acute liver failure. However, considering the strength of the evidence additional randomised clinical trials are needed before any support system can be recommended for routine use.
Collapse
Affiliation(s)
- J P Liu
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, H:S Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark, DK 2100
| | | | | | | |
Collapse
|
16
|
Liu JP, Gluud LL, Als‐Nielsen B, Gluud C. Artificial and bioartificial support systems for liver failure. Cochrane Database Syst Rev 2004; 2004:CD003628. [PMID: 14974025 PMCID: PMC6991941 DOI: 10.1002/14651858.cd003628.pub2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Artificial and bioartificial liver support systems may 'bridge' patients with acute or acute-on-chronic liver failure to liver transplantation or recovery. OBJECTIVES To evaluate beneficial and harmful effects of artificial and bioartificial support systems for acute and acute-on-chronic liver failure. SEARCH STRATEGY Trials were identified through The Cochrane Hepato-Biliary Group Controlled Trials Register (September 2002), The Cochrane Central Register of Controlled Trials on The Cochrane Library (Issue 3, 2002), MEDLINE (1966 - September 2002), EMBASE (1985 - September 2002), and The Chinese Biomedical Database (September 2002), manual searches of bibliographies and journals, authors of trials, and pharmaceutical companies. SELECTION CRITERIA Randomised clinical trials on artificial or bioartificial support systems for acute or acute on-chronic liver failure were included irrespective of blinding, publication status, or language. Non-randomised studies were included in explorative analyses. DATA COLLECTION AND ANALYSIS Data were extracted independently by three reviewers. Results were presented as relative risks (RR) with 95% confidence intervals (CI). Sources of heterogeneity were explored through sensitivity analyses and meta-regression. The primary outcome was mortality. MAIN RESULTS Twelve trials on artificial or bioartificial support systems versus standard medical therapy (483 patients) and two trials comparing different artificial support systems (105 patients) were included. Most trials had unclear methodological quality. Compared to standard medical therapy, support systems had no significant effect on mortality (RR 0.86; 95% CI 0.65-1.12) or bridging to liver transplantation (RR 0.87; 95% CI 0.73-1.05), but a significant beneficial effect on hepatic encephalopathy (RR 0.67; 95% CI 0.52-0.86). Meta-regression indicated that the effect of support systems depended on the type of liver failure (P = 0.03). In subgroup analyses, artificial support systems appeared to reduce mortality by 33% in acute-on-chronic liver failure (RR 0.67; 95% CI 0.51-0.90), but not in acute liver failure (RR 0.95; 95% CI 0.71-1.29). Two trials comparing artificial support systems showed significant mortality reductions with intermittent versus continuous haemofiltration (RR 0.58; 95% CI 0.36-0.94) and no significant difference between five versus ten hours of charcoal haemoperfusion (RR 1.03; 95% CI 0.65-1.62). The incidence of adverse events was inconsistently reported. REVIEWER'S CONCLUSIONS This Review indicates that artificial support systems may reduce mortality in acute-on-chronic liver failure. Artificial and bioartificial support systems did not appear to affect mortality in acute liver failure. However, considering the strength of the evidence additional randomised clinical trials are needed before any support system can be recommended for routine use.
Collapse
Affiliation(s)
- Jian Ping Liu
- Beijing University of Chinese MedicineCentre for Evidence‐Based Chinese Medicine 11 Bei San Huan Dong Lu, Chaoyang DistrictBeijingChina100029
| | - Lise Lotte Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 3344, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | - Bodil Als‐Nielsen
- Copenhagen Trial Unit, Centre for Clinical Intervention ResearchCochrane Hepato‐Biliary GroupRigshospitalet, Dept. 3344Blegdamsvej 9CopenhagenDenmarkDK‐2100
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 3344, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | | |
Collapse
|
17
|
Stoves J, Goode NP, Visvanathan R, Jones CH, Shires M, Will EJ, Davison AM. The bradykinin response and early hypotension at the introduction of continuous renal replacement therapy in the intensive care unit. Artif Organs 2001; 25:1009-13. [PMID: 11843770 DOI: 10.1046/j.1525-1594.2001.06703.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We assessed the relationship of certain clinical variables (including bradykinin [BK] release and dialysis membrane) to initial mean arterial pressure (MAP) reduction in 47 patients requiring continuous renal replacement therapy (CRRT) in an intensive care unit. The pretreatment MAP was 84 +/- 14 mm Hg for the group as a whole. The initial MAP reduction was 11.5 (7-20) mm Hg, occurring 4 to 8 min after connection. MAP reduction was 9 (6-15) mm Hg with polyacryonitrile (PAN) membranes versus 14 (5-19) mm Hg with polysulfone (PS) (not significant). There were positive correlations between MAP reduction and BK concentration at 3 (BK3; r = 0.58, p < 0.01) and 6 (BK6; r = 0.67, p < 0.001) min with PAN but not with PS. A greater reduction in MAP was seen in patients who were not receiving inotropic support (Mann-Whitney test, p < 0.01). BK3 and BK6 values for the PAN and PS groups were not significantly different. However, BK concentrations greater than 1,000 pg/ml were only seen with PAN (6 patients, MAP reduction 27 [17-31] mm Hg). There were positive (albumin) and negative (age; acute physiology, age, and chronic health evaluation score; C-reactive protein [CRP]; calcium) correlations with BK3/BK6 in the PAN and PS groups, some of which (albumin, CRP) reached statistical significance. In summary, MAP reduction at the start of CRRT correlates with BK concentration. The similarity of response with PAN and PS suggests an importance for other clinical factors. In this study, hemodynamic instability was more likely in patients with evidence of a less severe inflammatory or septic illness.
Collapse
Affiliation(s)
- J Stoves
- Department of Renal Medicine, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
|