1
|
Baghban Taraghdari Z, Imani R, Mohabatpour F. A Review on Bioengineering Approaches to Insulin Delivery: A Pharmaceutical and Engineering Perspective. Macromol Biosci 2019; 19:e1800458. [DOI: 10.1002/mabi.201800458] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zahra Baghban Taraghdari
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
| | - Rana Imani
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
| | - Fatemeh Mohabatpour
- Z. Baghban Taraghdari, Dr. R. Imani, F. MohabatpourDepartment of Biomedical EngineeringAmirkabir University of Technology Tehran 15875/4413 Iran
- Division of Biomedical EngineeringUniversity of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|
2
|
Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm 2017; 535:272-284. [PMID: 29138045 DOI: 10.1016/j.ijpharm.2017.11.018] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/20/2023]
Abstract
Since their discovery over 100 years ago cyclodextrins (CDs) have been the subject of numerous scientific publications. In 2016 alone CDs were the subject of over 2200 research articles published in peer-reviewed journals and mentioned in over 2300 patents and patent applications, many of which were on pharmaceutical applications. Natural CDs and their derivatives are used as enabling pharmaceutical excipients that enhance aqueous solubility of poorly soluble drugs, increase drug permeability through biological membranes and improve drug bioavailability. Unlike conventional penetration enhancers, their hydrophilic structure and high molecular weight prevents them from penetrate into lipophilic membranes leaving biological membranes intact. The natural CDs and some of their derivatives have monographs in pharmacopeias and are also commonly used as food additives and in toiletry products. CDs form inclusion complexes with lipophilic moieties of hydrophobic drugs. Furthermore, CDs are able to form non-inclusion complexes and self-assembled aggregates; small and large complex aggregates with micellar-like structures that can enhance drug solubility. Excipients commonly used in pharmaceutical formulations may have additive or inhibiting effect on the CD solubilization. Here various methods used to investigate CD aggregate formation are reviewed as well as techniques that are used to increase the solubilizing effects of CDs; methods that enhance the apparent intrinsic solubility of drugs and/or the complexation efficacy and decrease the amount of CD needed to develop CD-containing pharmaceutical formulations. It will be explained how too much or too little CD can hamper drug bioavailability, and the role of CDs in solid dosage forms and parenteral formulations, and examples given on how CDs can enhance drug delivery after ocular, nasal and pulmonary administration.
Collapse
Affiliation(s)
- Phatsawee Jansook
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Noriko Ogawa
- Department of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
3
|
He S, Lin KF, Sun Z, Song Y, Zhao YN, Wang Z, Bi L, Liu J. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. Artif Organs 2017; 40:E128-35. [PMID: 27378617 DOI: 10.1111/aor.12741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/29/2022]
Abstract
The aim of the current study was to prepare microsphere-based composite scaffolds made of nano-hydroxyapatite (nHA)/poly (DL-lactic-co-glycolic acid) (PLGA) at different ratios and evaluate the effects of nHA on the characteristics of scaffolds for tissue engineering application. First, microsphere-based composite scaffolds made of two ratios of nHA/PLGA (nHA/PLGA = 20/80 and nHA/PLGA = 50/50) were prepared. Then, the effects of nHA on the wettability, mechanical strength, and degradation of scaffolds were investigated. Second, the biocompatibility and osteoinductivity were evaluated and compared by co-culture of scaffolds with bone marrow stromal stem cells (BMSCs). The results showed that the adhesion, proliferation, and osteogenic differentiation of BMSCs with nHA/PLGA (50/50) were better than those with nHA/PLGA (20/80). Finally, we implanted the scaffolds into femur bone defects in a rabbit model, then the capacity of guiding bone regeneration as well as the in vivo degradation were observed by micro-CT and histological examinations. After 4 weeks' implantation, there was no significant difference on the repair of bone defects. However, after 8 and 12 weeks' implantation, the nHA/PLGA (20/80) exhibited better bone formation than nHA/PLGA (50/50). These results suggested that a proper concentration of nHA in the nHA/PLGA composite should be taken into account when the composite scaffolds were prepared, which plays an important role in the biocompatibility, degradation rate and osteoconductivity.
Collapse
Affiliation(s)
- Shu He
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai-Feng Lin
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Sun
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yue Song
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi-Nan Zhao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Long Bi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Albertini B, Iraci N, Schoubben A, Giovagnoli S, Ricci M, Blasi P, Rossi C. β-cyclodextrin hinders PLGA plasticization during microparticle manufacturing. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Literature Alerts. J Microencapsul 2010. [DOI: 10.3109/02652040309178092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Park W, Na K. Polyelectrolyte complex of chondroitin sulfate and peptide with lower pI value in poly(lactide-co-glycolide) microsphere for stability and controlled release. Colloids Surf B Biointerfaces 2009; 72:193-200. [PMID: 19414243 DOI: 10.1016/j.colsurfb.2009.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/01/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
A polyelectrolyte complex between a therapeutic peptide and chargeable polymer was applied to prevent peptide denaturation in poly(lactide-co-glycolide) (PLGA) microspheres. Chondroitin sulfate A (CsA) was employed as a polymeric additive for the formation of an ionic complex with insulin (InS). The complex prepared at pH 3.0 evidenced a nano-size in the range of 100-400 nm with a mono distribution. The stability of InS in the complex in an organic/water (O/W) interface was verified via RP-HPLC. The insulin in the complex evidenced a retention time almost identical to native InS, whereas free insulin did not evidence such a retention time. On the basis of these studies, PLGA microspheres including a complex with various CsA/InS ratios were prepared via a double-emulsion method (PLGA/CsA MS). InS loading efficiency in the system is higher than that of the microspheres without CsA. The system evidenced a lower initial burst and, following the initial burst, continuous release kinetics for 30 days. Circular dichroism (CD) spectra demonstrated that the insulin in PLGA/CsA MS is more stable than the PLGA-only microspheres (PLGA/only MS) for 20 days. These results indicate that the complex system with CsA is useful for the long-term delivery of peptides with lower pI values.
Collapse
Affiliation(s)
- Wooram Park
- Department of Biotechnology, The Catholic University of Korea, 43-1 Yeokkok2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea
| | | |
Collapse
|
7
|
Al-Tabakha MM, Arida AI. Recent challenges in insulin delivery systems: a review. Indian J Pharm Sci 2008; 70:278-86. [PMID: 20046733 PMCID: PMC2792528 DOI: 10.4103/0250-474x.42968] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 02/21/2008] [Accepted: 05/09/2008] [Indexed: 11/06/2022] Open
Abstract
Relatively, a large percentage of world population is affected by diabetes mellitus, out of which approximately 5-10% with type 1 diabetes while the remaining 90% with type 2. Insulin administration is essential for type 1 patients while it is required at later stage by the patients of type 2. Current insulin delivery systems are available as transdermal injections which may be considered as invasive. Several non-invasive approaches for insulin delivery are being pursued by pharmaceutical companies to reduce the pain, and hypoglycemic incidences associated with injections in order to improve patient compliance. While any new insulin delivery system requires health authorities' approval, to provide long term safety profile and insuring patients' acceptance. The inhalation delivery system Exubera((R)) has already become clinically available in the United States and Europe for patients with diabetes as non-invasive delivery system.
Collapse
Affiliation(s)
- M. M. Al-Tabakha
- Department of Pharmaceutics, Faculty of Pharmacy and Health Sciences, Ajman University of Science and Technology Network, P.O. Box 2202, Al-Fujairah, UAE
| | - A. I. Arida
- Faculty of Pharmacy, Philadelphia University, P.O.Box 1, Postal Code 19392, Jordan
| |
Collapse
|
8
|
Soares AF, Carvalho RDA, Veiga F. Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems. Nanomedicine (Lond) 2007; 2:183-202. [PMID: 17716120 DOI: 10.2217/17435889.2.2.183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review discusses drawbacks to peptide and protein oral formulations related to these drugs’ chemical and physical instability. Means used to overcome such limitations are mentioned and discussed in parallel with manufacturing considerations, metabolism, absorption mechanisms and the efflux systems that peptides and proteins experience as they travel through the gastrointestinal tract. Special focus is given to the use of delivery systems based on nanoparticles and cyclodextrins. Advantages of these systems relate to the protection from degradation, enhancement of absorption, targeting and controlling the release of the drug. Biodistribution and safety issues are discussed once material from the delivery system is expected to be absorbed by the body and thus interact with biological components. Operating parameters regarding nanoparticle manufacture and composition are also overviewed since nanoparticle physicochemical characteristics influence the ability to successfully entrap the intended drug as well as interaction with body.
Collapse
Affiliation(s)
- Ana Francisca Soares
- Pharmaceutical Technology Laboratory, Faculty of Pharmacy, University of Coimbra, Rua do Norte, 3000-004 Coimbra, Portugal.
| | | | | |
Collapse
|
9
|
Castellanos IJ, Flores G, Griebenow K. Effect of cyclodextrins on alpha-chymotrypsin stability and loading in PLGA microspheres upon S/O/W encapsulation. J Pharm Sci 2006; 95:849-58. [PMID: 16493595 DOI: 10.1002/jps.20512] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential of cyclodextrins to stabilize alpha-chymotrypsin upon encapsulation in Poly(lactic-co-glycolic) acid (PLGA) microspheres using a solid-in-oil-in-water (s/o/w) technique was investigated. Two cyclodextrins, hydroxyl-propyl-beta-cyclodextrin (HPbetaCD) and methyl-beta-cyclodextrin (MbetaCD), one insoluble and the other soluble in methylene chloride, were used. The results demonstrate that HPbetaCD failed to stabilize alpha-chymotrypsin upon encapsulation. Specifically, 19% of the protein was aggregated and the specific activity of the enzyme was reduced to ca. 50% of that prior to encapsulation. In contrast, MbetaCD significantly decreased the formation of aggregates to 3% and the retained specific activity of the enzyme was approximately 90%. The co-lyophilization of alpha-chymotrypsin with MbetaCD prior to encapsulation was a requisite to preserve the protein stability in microspheres. Furthermore, MbetaCD prevented the loss of protein during the preparation of microspheres and the encapsulation efficiency was improved to 90%. Release experiments showed the use of MbetaCD modified the release profile: the burst release decreased from 54% (in the absence of the excipient) to 36%. The results suggest that MbetaCD might be a suitable excipient to improve protein stability in s/o/w encapsulation procedures.
Collapse
Affiliation(s)
- Ingrid J Castellanos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, P.O. Box 23346, San Juan, Puerto Rico 00931-3346
| | | | | |
Collapse
|
10
|
The effect of complexation on characteristics and drug release from PLGA microspheres loaded by cyclosporine-cyclodextrin complex. J Drug Deliv Sci Technol 2006. [DOI: 10.1016/s1773-2247(06)50063-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
|