1
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
2
|
Dos Passos GR, Fernández AC, Vasques AM, Martins WA, Palmini A. Mother and daughter with adolescent-onset severe frontal lobe dysfunction and epilepsy. Dement Neuropsychol 2016; 10:238-243. [PMID: 29213461 PMCID: PMC5642421 DOI: 10.1590/s1980-5764-2016dn1003011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Familial cases of early-onset prominent frontal lobe dysfunction associated with
epilepsy have not been reported to date. We report a mother and her only daughter
with incapacitating behavioral manifestations of frontal lobe dysfunction and
epilepsy of variable severity. The possibility of a hitherto undescribed genetic
condition is discussed.
Collapse
Affiliation(s)
| | - Alonso Cuadrado Fernández
- Neurology Service, São Lucas Hospital, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Adriana Machado Vasques
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - William Alves Martins
- Neurology Service, São Lucas Hospital, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil.,Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - André Palmini
- Neurology Service, São Lucas Hospital, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil.,Porto Alegre Epilepsy Surgery Program, Neurology Service, São Lucas Hospital, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Subaran RL, Greenberg DA. The Genetics of Common Epilepsy Disorders: Lessons Learned from the Channelopathy Era. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Abstract
The γ-aminobutyric acid receptor type A (GABAA receptor) is a ligand-gated chloride channel that mediates major inhibitory functions in the central nervous system. GABAA receptors function mainly as pentamers containing α, β, and either γ or δ subunits. A number of antiepileptic drugs have agonistic effects on GABAA receptors. Hence, dysfunctions of GABAA receptors have been postulated to play important roles in the etiology of epilepsy. In fact, mutations or genetic variations of the genes encoding the α1, α6, β2, β3, γ2, or δ subunits (GABRA1, GABRA6, GABRB2, GABRB3, GABRG2, and GABRD, respectively) have been associated with human epilepsy, both with and without febrile seizures. Epilepsy resulting from mutations is commonly one of following, genetic (idiopathic) generalized epilepsy (e.g., juvenile myoclonic epilepsy), childhood absence epilepsy, genetic epilepsy with febrile seizures, or Dravet syndrome. Recently, mutations of GABRA1, GABRB2, and GABRB3 were associated with infantile spasms and Lennox-Gastaut syndrome. These mutations compromise hyperpolarization through GABAA receptors, which is believed to cause seizures. Interestingly, most of the insufficiencies are not caused by receptor gating abnormalities, but by complex mechanisms, including endoplasmic reticulum (ER)-associated degradation, nonsense-mediated mRNA decay, intracellular trafficking defects, and ER stress. Thus, GABAA receptor subunit mutations are now thought to participate in the pathomechanisms of epilepsy, and an improved understanding of these mutations should facilitate our understanding of epilepsy and the development of new therapies.
Collapse
|
5
|
Berger I, Dor T, Halvardson J, Edvardson S, Shaag A, Feuk L, Elpeleg O. Intractable epilepsy of infancy due to homozygous mutation in the EFHC1 gene. Epilepsia 2012; 53:1436-40. [DOI: 10.1111/j.1528-1167.2012.03536.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Hirose S. A new paradigm of channelopathy in epilepsy syndromes: Intracellular trafficking abnormality of channel molecules. Epilepsy Res 2006; 70 Suppl 1:S206-17. [PMID: 16860540 DOI: 10.1016/j.eplepsyres.2005.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 10/24/2022]
Abstract
Mutations in genes encoding ion channels in brain neurons have been identified in various epilepsy syndromes. In neuronal networks, "gain-of-function" of channels in excitatory neurotransmission could lead to hyper-excitation while "loss-of-function" in inhibitory transmission impairs neuronal inhibitory system, both of which can result in epilepsy. A working hypothesis to view epilepsy as a disorder of channel or "channelopathy" seems rational to explore the pathogenesis of epilepsy. However, the imbalance resulting from channel dysfunction is not sufficient to delineate the pathogenesis of all epilepsy syndromes of which the underlying channel abnormalities have been verified. Mutations identified in epilepsy, mainly in genes encoding subunits of GABA(A) receptors, undermine intracellular trafficking, thus leading to retention of channel molecules in the endoplasmic reticulum (ER). This process may cause ER stress followed by apoptosis, which is a known pathomechanism of certain neurodegenerative disorders. Thus, the pathomechanism of "channel trafficking abnormality" may provide a new paradigm to channelopathy to unsolved questions underlying epilepsy, such as differences between generalized epilepsy with febrile seizures plus and severe myoclonic epilepsy in infancy, which share the causative genetic abnormalities in the same genes and hence are so far considered to be within the spectrum of one disease entity or allelic variants.
Collapse
Affiliation(s)
- Shinichi Hirose
- Department of Pediatrics, Fukuoka University, 45-1,7-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
7
|
Thiel R. Might calcium disorders cause or contribute to myoclonic seizures in epileptics? Med Hypotheses 2006; 66:969-74. [PMID: 16439065 DOI: 10.1016/j.mehy.2005.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 11/17/2005] [Indexed: 11/22/2022]
Abstract
Although epilepsy is not rare, many epileptic conditions are considered to be idiopathic and the related seizures of unknown origin. It does appear that different types of seizures are caused by differing mechanisms. This paper discusses scattered case reports involving problems with calcium metabolism and the thyroid, and/or the parathyroid glands concurrent with seizures that support the position that calcium control mechanisms may have been involved in causing seizures in those patients. This paper hypothesizes that calcium levels can cause, or at least contribute to myoclonic (jerk) seizures, as well as to possibly infantile spasms. As these conditions are difficult to treat medically, this paper suggests that nutritional interventions, such as supplemental calcium, magnesium and/or vitamin D, might well be considered as an option as a first-line treatment in those with these types of epileptic disorders. The nutritional recommendations also would apply for those who have seizures concurrent with Down syndrome.
Collapse
Affiliation(s)
- R Thiel
- Center for Natural Health Research, Down-Syndrome Epilepsy Foundation, Arroyo Grande, CA 93420, USA.
| |
Collapse
|
8
|
Shafer TJ, Meyer DA. Effects of pyrethroids on voltage-sensitive calcium channels: a critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity. Toxicol Appl Pharmacol 2004; 196:303-18. [PMID: 15081275 DOI: 10.1016/j.taap.2003.12.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
The Food Quality Protection Act of 1996 requires that the U.S. Environmental Protection Agency conduct cumulative risk assessments for classes of pesticides that have a common mode or mechanism of action. For the pyrethroid insecticides, disruption of voltage-sensitive sodium channel function is generally accepted as the mechanism underlying acute neurotoxicity. However, data exist which suggest that voltage-sensitive calcium (Ca(2+)) channels (VSCC) may also be important targets of pyrethroid action. VSCC are important to neuronal function during development and for neurotransmitter release, gene expression, and electrical excitability in the nervous system. Disruption of these and other processes mediated by VSCC can result in neurotoxicity. If effects on VSCC are demonstrated to contribute to pyrethroid neurotoxicity, then such effects will have to be considered when making decisions regarding cumulative risk of exposure to this class of compounds. This document provides a critical review of the data related to the hypothesis that VSCC are important targets of pyrethroid effects. Data supporting effects of pyrethroids on VSCC have been generated by several different laboratories using different techniques and biological preparations. Thus, the many reports of effects on VSCC provide evidence that pyrethroids may interact with VSCC. However, evidence to support a role of VSCC in pyrethroid neurotoxicity is based entirely on in vitro observations, and numerous limitations exist in these data, including: (1) lack of defined concentration-response relationships, with some effects observed only at relatively high concentrations, (2) the use of indirect measures of VSCC function, (3) data from nonmammalian species, (4) data from studies that have not been peer-reviewed, (5) the need for replication of some effects, and (6) inconsistent or contradictory results from different laboratories/preparations. Thus, at the present time, it is premature to conclude that effects on VSCC play an important role in the acute neurotoxicity of pyrethroid insecticides in mammals. To demonstrate that VSCC are important targets of pyrethroid neurotoxicity in mammals, in vivo studies supporting a role for pyrethroid effects on VSCC are needed. Additional support could be provided by demonstration of direct effects of pyrethroid compounds on mammalian neuronal VSCC in vitro, including demonstration that concentration-response relationships are similar, or greater, in sensitivity to effects of pyrethroids on voltage-sensitive sodium channels. If such effects were to be demonstrated, the rationale for considering VSCC as targets of pyrethroid compounds when assessing cumulative risk would be strengthened. However, at the present time, the data available neither support nor refute conclusively the hypothesis that effects on VSCC are important to the acute neurotoxicity of pyrethroids.
Collapse
Affiliation(s)
- Timothy J Shafer
- Neurophysiological Toxicology Branch, Neurotoxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
9
|
Abstract
Febrile seizures (FS) may represent the most common seizure disorder in childhood and are known to be associated with putative genetic predispositions. Nevertheless, molecular genetic approaches toward understanding FS have been just initiated this decade. Recently, several genetic loci for FS have been mapped thereby assuring the genetic heterogeneity of FS. However, the exact molecular mechanisms of FS are yet to be elucidated. Genetic defects have been recently identified in autosomal dominant epilepsy with FS plus or generalized epilepsy with FS plus. The underlying mutations were found in genes encoding several Na+ channel subunits and the gamma2 subunit of gamma amino-butyric acid (GABA)A receptors in the brain. Furthermore, both channels are also associated with severe myoclonic epilepsy in infancy, where the seizure attacks often begin with prolonged FS and are precipitated by fever even afterwards. Na+ channels are associated with other temperature-sensitive disorders, and GABA(A) receptors are known to play an important role in the pathogenesis of FS. These lines of evidence suggest the involvement of various Na+ channels, GABA(A) receptors and additional auxiliary proteins in the pathogenesis of frequent FS and even in simple FS. This hypothesis may facilitate our understanding of the genetic background of FS.
Collapse
Affiliation(s)
- Shinichi Hirose
- Department of Pediatrics, School of Medicine, Fukuoka University, 45-1, 7-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The management of seizures and epilepsy begins with forming a differential diagnosis, making the diagnosis, and then classifying seizure type and epileptic syndrome. Classification guides treatment, including ancillary testing, management, prognosis, and if needed, selection of the appropriate antiepileptic drug (AED). Many AEDs are available, and certain seizure types or epilepsy syndromes respond to specific AEDs. The identification of the genetics, molecular basis, and pathophysiologic mechanisms of epilepsy has resulted from classification of specific epileptic syndromes. The classification system used by the International League Against Epilepsy is periodically revised. The proposed revision changes the classification emphasis from the anatomic origin of seizures (focal vs generalized) to seizure semiology (ie, the signs or clinical manifestations). Modified systems have been developed for specific circumstances (eg, neonatal seizures, infantile seizures, status epilepticus, and epilepsy surgery). This article reviews seizure and epilepsy classification, emphasizing new data.
Collapse
Affiliation(s)
- James J Riviello
- Clinical Neurophysiology Laboratory, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|