1
|
Jiang X, Hu Z, Wang S, Zhang Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers (Basel) 2023; 15:3608. [PMID: 37509272 PMCID: PMC10377683 DOI: 10.3390/cancers15143608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The application of deep learning technology to realize cancer diagnosis based on medical images is one of the research hotspots in the field of artificial intelligence and computer vision. Due to the rapid development of deep learning methods, cancer diagnosis requires very high accuracy and timeliness as well as the inherent particularity and complexity of medical imaging. A comprehensive review of relevant studies is necessary to help readers better understand the current research status and ideas. (2) Methods: Five radiological images, including X-ray, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission computed tomography (PET), and histopathological images, are reviewed in this paper. The basic architecture of deep learning and classical pretrained models are comprehensively reviewed. In particular, advanced neural networks emerging in recent years, including transfer learning, ensemble learning (EL), graph neural network, and vision transformer (ViT), are introduced. Five overfitting prevention methods are summarized: batch normalization, dropout, weight initialization, and data augmentation. The application of deep learning technology in medical image-based cancer analysis is sorted out. (3) Results: Deep learning has achieved great success in medical image-based cancer diagnosis, showing good results in image classification, image reconstruction, image detection, image segmentation, image registration, and image synthesis. However, the lack of high-quality labeled datasets limits the role of deep learning and faces challenges in rare cancer diagnosis, multi-modal image fusion, model explainability, and generalization. (4) Conclusions: There is a need for more public standard databases for cancer. The pre-training model based on deep neural networks has the potential to be improved, and special attention should be paid to the research of multimodal data fusion and supervised paradigm. Technologies such as ViT, ensemble learning, and few-shot learning will bring surprises to cancer diagnosis based on medical images.
Collapse
Grants
- RM32G0178B8 BBSRC
- MC_PC_17171 MRC, UK
- RP202G0230 Royal Society, UK
- AA/18/3/34220 BHF, UK
- RM60G0680 Hope Foundation for Cancer Research, UK
- P202PF11 GCRF, UK
- RP202G0289 Sino-UK Industrial Fund, UK
- P202ED10, P202RE969 LIAS, UK
- P202RE237 Data Science Enhancement Fund, UK
- 24NN201 Fight for Sight, UK
- OP202006 Sino-UK Education Fund, UK
- RM32G0178B8 BBSRC, UK
- 2023SJZD125 Major project of philosophy and social science research in colleges and universities in Jiangsu Province, China
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
2
|
Jain S, Naicker D, Raj R, Patel V, Hu YC, Srinivasan K, Jen CP. Computational Intelligence in Cancer Diagnostics: A Contemporary Review of Smart Phone Apps, Current Problems, and Future Research Potentials. Diagnostics (Basel) 2023; 13:diagnostics13091563. [PMID: 37174954 PMCID: PMC10178016 DOI: 10.3390/diagnostics13091563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is a dangerous and sometimes life-threatening disease that can have several negative consequences for the body, is a leading cause of mortality, and is becoming increasingly difficult to detect. Each form of cancer has its own set of traits, symptoms, and therapies, and early identification and management are important for a positive prognosis. Doctors utilize a variety of approaches to detect cancer, depending on the kind and location of the tumor. Imaging tests such as X-rays, Computed Tomography scans, Magnetic Resonance Imaging scans, and Positron Emission Tomography (PET) scans, which may provide precise pictures of the body's interior structures to spot any abnormalities, are some of the tools that doctors use to diagnose cancer. This article evaluates computational-intelligence approaches and provides a means to impact future work by focusing on the relevance of machine learning and deep learning models such as K Nearest Neighbour (KNN), Support Vector Machine (SVM), Naïve Bayes, Decision Tree, Deep Neural Network, Deep Boltzmann machine, and so on. It evaluates information from 114 studies using Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). This article explores the advantages and disadvantages of each model and provides an outline of how they are used in cancer diagnosis. In conclusion, artificial intelligence shows significant potential to enhance cancer imaging and diagnosis, despite the fact that there are a number of clinical issues that need to be addressed.
Collapse
Affiliation(s)
- Somit Jain
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Dharmik Naicker
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Ritu Raj
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Vedanshu Patel
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Yuh-Chung Hu
- Department of Mechanical and Electromechanical Engineering, National ILan University, Yilan 26047, Taiwan
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Chun-Ping Jen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan
| |
Collapse
|
3
|
A Comprehensive Review on Smart Health Care: Applications, Paradigms, and Challenges with Case Studies. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4822235. [PMID: 36247859 PMCID: PMC9536991 DOI: 10.1155/2022/4822235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023]
Abstract
Growth and advancement of the Deep Learning (DL) and the Internet of Things (IoT) are figuring out their way over the modern contemporary world through integrating various technologies in distinct fields viz, agriculture, manufacturing, energy, transportation, supply chains, cities, healthcare, and so on. Researchers had identified the feasibility of integrating deep learning, cloud, and IoT to enhance the overall automation, where IoT may prolong its application area through utilizing cloud services and the cloud can even prolong its applications through data acquired by IoT devices like sensors and deep learning for disease detection and diagnosis. This study explains a summary of various techniques utilized in smart healthcare, i.e., deep learning, cloud-based-IoT applications in smart healthcare, fog computing in smart healthcare, and challenges and issues faced by smart healthcare and it presents a wider scope as it is not intended for a particular application such aspatient monitoring, disease detection, and diagnosing and the technologies used for developing this smart systems are outlined. Smart health bestows the quality of life. Convenient and comfortable living is made possible by the services provided by smart healthcare systems (SHSs). Since healthcare is a massive area with enormous data and a broad spectrum of diseases associated with different organs, immense research can be done to overcome the drawbacks of traditional healthcare methods. Deep learning with IoT can effectively be applied in the healthcare sector to automate the diagnosing and treatment process even in rural areas remotely. Applications may include disease prevention and diagnosis, fitness and patient monitoring, food monitoring, mobile health, telemedicine, emergency systems, assisted living, self-management of chronic diseases, and so on.
Collapse
|
4
|
A Review of Deep Learning Algorithms and Their Applications in Healthcare. ALGORITHMS 2022. [DOI: 10.3390/a15020071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Deep learning uses artificial neural networks to recognize patterns and learn from them to make decisions. Deep learning is a type of machine learning that uses artificial neural networks to mimic the human brain. It uses machine learning methods such as supervised, semi-supervised, or unsupervised learning strategies to learn automatically in deep architectures and has gained much popularity due to its superior ability to learn from huge amounts of data. It was found that deep learning approaches can be used for big data analysis successfully. Applications include virtual assistants such as Alexa and Siri, facial recognition, personalization, natural language processing, autonomous cars, automatic handwriting generation, news aggregation, the colorization of black and white images, the addition of sound to silent films, pixel restoration, and deep dreaming. As a review, this paper aims to categorically cover several widely used deep learning algorithms along with their architectures and their practical applications: backpropagation, autoencoders, variational autoencoders, restricted Boltzmann machines, deep belief networks, convolutional neural networks, recurrent neural networks, generative adversarial networks, capsnets, transformer, embeddings from language models, bidirectional encoder representations from transformers, and attention in natural language processing. In addition, challenges of deep learning are also presented in this paper, such as AutoML-Zero, neural architecture search, evolutionary deep learning, and others. The pros and cons of these algorithms and their applications in healthcare are explored, alongside the future direction of this domain. This paper presents a review and a checkpoint to systemize the popular algorithms and to encourage further innovation regarding their applications. For new researchers in the field of deep learning, this review can help them to obtain many details about the advantages, disadvantages, applications, and working mechanisms of a number of deep learning algorithms. In addition, we introduce detailed information on how to apply several deep learning algorithms in healthcare, such as in relation to the COVID-19 pandemic. By presenting many challenges of deep learning in one section, we hope to increase awareness of these challenges, and how they can be dealt with. This could also motivate researchers to find solutions for these challenges.
Collapse
|
5
|
Shi K, Huang R, Peng Z, Mu F, Yang X. MCSNet: Channel Synergy-Based Human-Exoskeleton Interface With Surface Electromyogram. Front Neurosci 2021; 15:704603. [PMID: 34867145 PMCID: PMC8636050 DOI: 10.3389/fnins.2021.704603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The human-robot interface (HRI) based on biological signals can realize the natural interaction between human and robot. It has been widely used in exoskeleton robots recently to help predict the wearer's movement. Surface electromyography (sEMG)-based HRI has mature applications on the exoskeleton. However, the sEMG signals of paraplegic patients' lower limbs are weak, which means that most HRI based on lower limb sEMG signals cannot be applied to the exoskeleton. Few studies have explored the possibility of using upper limb sEMG signals to predict lower limb movement. In addition, most HRIs do not consider the contribution and synergy of sEMG signal channels. This paper proposes a human-exoskeleton interface based on upper limb sEMG signals to predict lower limb movements of paraplegic patients. The interface constructs an channel synergy-based network (MCSNet) to extract the contribution and synergy of different feature channels. An sEMG data acquisition experiment is designed to verify the effectiveness of MCSNet. The experimental results show that our method has a good movement prediction performance in both within-subject and cross-subject situations, reaching an accuracy of 94.51 and 80.75%, respectively. Furthermore, feature visualization and model ablation analysis show that the features extracted by MCSNet are physiologically interpretable.
Collapse
Affiliation(s)
- Kecheng Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.,Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China.,Engineering Research Center of Human Robot Hybrid Intelligent Technologies and Systems, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.,Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China.,Engineering Research Center of Human Robot Hybrid Intelligent Technologies and Systems, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhinan Peng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.,Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China.,Engineering Research Center of Human Robot Hybrid Intelligent Technologies and Systems, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengjun Mu
- Center for Robotics, University of Electronic Science and Technology of China, Chengdu, China.,Engineering Research Center of Human Robot Hybrid Intelligent Technologies and Systems, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Yang
- Department of Orthopedics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Parashar G, Chaudhary A, Rana A. Systematic Mapping Study of AI/Machine Learning in Healthcare and Future Directions. SN COMPUTER SCIENCE 2021; 2:461. [PMID: 34549197 PMCID: PMC8444522 DOI: 10.1007/s42979-021-00848-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022]
Abstract
This study attempts to categorise research conducted in the area of: use of machine learning in healthcare, using a systematic mapping study methodology. In our attempt, we reviewed literature from top journals, articles, and conference papers by using the keywords use of machine learning in healthcare. We queried Google Scholar, resulted in 1400 papers, and then categorised the results on the basis of the objective of the study, the methodology adopted, type of problem attempted and disease studied. As a result we were able to categorize study in five different categories namely, interpretable ML, evaluation of medical images, processing of EHR, security/privacy framework, and transfer learning. In the study we also found that most of the authors have studied cancer, and one of the least studied disease was epilepsy, evaluation of medical images is the most researched and a new field of research, Interpretable ML/Explainable AI, is gaining momentum. Our basic intent is to provide a fair idea to future researchers about the field and future directions.
Collapse
Affiliation(s)
| | | | - Ajay Rana
- AIIT, AMITY University, Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Raza K, Singh NK. A Tour of Unsupervised Deep Learning for Medical Image Analysis. Curr Med Imaging 2021; 17:1059-1077. [PMID: 33504314 DOI: 10.2174/1573405617666210127154257] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Interpretation of medical images for the diagnosis and treatment of complex diseases from high-dimensional and heterogeneous data remains a key challenge in transforming healthcare. In the last few years, both supervised and unsupervised deep learning achieved promising results in the area of medical image analysis. Several reviews on supervised deep learning are published, but hardly any rigorous review on unsupervised deep learning for medical image analysis is available. OBJECTIVES The objective of this review is to systematically present various unsupervised deep learning models, tools, and benchmark datasets applied to medical image analysis. Some of the discussed models are autoencoders and its other variants, Restricted Boltzmann machines (RBM), Deep belief networks (DBN), Deep Boltzmann machine (DBM), and Generative adversarial network (GAN). Further, future research opportunities and challenges of unsupervised deep learning techniques for medical image analysis are also discussed. CONCLUSION Currently, interpretation of medical images for diagnostic purposes is usually performed by human experts that may be replaced by computer-aided diagnosis due to advancement in machine learning techniques, including deep learning, and the availability of cheap computing infrastructure through cloud computing. Both supervised and unsupervised machine learning approaches are widely applied in medical image analysis, each of them having certain pros and cons. Since human supervisions are not always available or inadequate or biased, therefore, unsupervised learning algorithms give a big hope with lots of advantages for biomedical image analysis.
Collapse
Affiliation(s)
- Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi. India
| | | |
Collapse
|
8
|
Rajan JP, Rajan SE, Martis RJ, Panigrahi BK. Fog Computing Employed Computer Aided Cancer Classification System Using Deep Neural Network in Internet of Things Based Healthcare System. J Med Syst 2019; 44:34. [PMID: 31853735 DOI: 10.1007/s10916-019-1500-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Computer assisted automatic smart pattern analysis of cancer affected pixel structure takes critical role in pre-interventional decision making for oral cancer treatment. Internet of Things (IoT) in healthcare systems is now emerging solution for modern e-healthcare system to provide high quality medical care. In this research work, we proposed a novel method which utilizes a modified vesselness measurement and a Deep Convolutional Neural Network (DCNN) to identify the oral cancer region structure in IoT based smart healthcare system. The robust vesselness filtering scheme handles noise while reserving small structures, while the CNN framework considerably improves classification accuracy by deblurring focused region of interest (ROI) through integrating with multi-dimensional information from feature vector selection step. The marked feature vector points are extracted from each connected component in the region and used as input for training the CNN. During classification, each connected part is individually analysed using the trained DCNN by considering the feature vector values that belong to its region. For a training of 1500 image dataset, an accuracy of 96.8% and sensitivity of 92% is obtained. Hence, the results of this work validate that the proposed algorithm is effective and accurate in terms of classification of oral cancer region in accurate decision making. The developed system can be used in IoT based diagnosis in health care systems, where accuracy and real time diagnosis are essential.
Collapse
Affiliation(s)
- J Pandia Rajan
- Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India.
| | - S Edward Rajan
- Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | - Roshan Joy Martis
- Vivekananda College of Engineering & Technology, Puttur, Karnataka, India
| | - B K Panigrahi
- Indian Institute of Technology, New Delhi, Delhi, India
| |
Collapse
|