1
|
C FC, T K. Advances in stabilization of metallic nanoparticle with biosurfactants- a review on current trends. Heliyon 2024; 10:e29773. [PMID: 38699002 PMCID: PMC11064090 DOI: 10.1016/j.heliyon.2024.e29773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Recently, research based on new biomaterials for stabilizing metallic nanoparticles has increased due to their greater environmental friendliness and lower health risk. Their stability is often a critical factor influencing their performance and shelf life. Nowadays, the use of biosurfactants is gaining interest due to their sustainable advantages. Biosurfactants are used for various commercial and industrial applications such as food processing, therapeutic applications, agriculture, etc. Biosurfactants create stable coatings surrounding nanoparticles to stop agglomeration and provide long-term stability. The present review study describes a collection of important scientific works on stabilization and capping of metallic nanoparticles as biosurfactants. This review also provides a comprehensive overview of the intrinsic properties and environmental aspects of metal nanoparticles coated with biosurfactants. In addition, future methods and potential solutions for biosurfactant-mediated stabilization in nanoparticle synthesis are also highlighted. The objective of this study is to ensure that the stabilized nanoparticles exhibit biocompatible properties, making them suitable for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Kamalesh T
- Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| |
Collapse
|
2
|
A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydr Res 2022; 516:108556. [DOI: 10.1016/j.carres.2022.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
3
|
Yang W, Liang W, Zhitomirsky I. Application of Rhamnolipids as Dispersing Agents for the Fabrication of Composite MnO 2-Carbon Nanotube Electrodes for Supercapacitors. Molecules 2022; 27:1659. [PMID: 35268760 PMCID: PMC8911650 DOI: 10.3390/molecules27051659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/19/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The high theoretical capacitance of MnO2 renders it a promising material for the cathodes of asymmetric supercapacitors. The good dispersion of MnO2 and conductive additives in a nanocomposite electrode is a key factor for efficient electrode performance. This article describes, for the first time, the application of rhamnolipids (RL) as efficient natural biosurfactants for the fabrication of nanocomposite MnO2-carbon nanotube electrodes for supercapacitors. RL act as co-dispersants for MnO2 and carbon nanotubes and facilitate their efficient mixing, which allows for advanced capacitive properties at an active mass of 40 mg cm-2 in Na2SO4 electrolytes. The highest capacitance obtained from the cyclic voltammetry data at a scan rate of 2 mV s-1 is 8.10 F cm-2 (202.6 F g-1). The highest capacitance obtained from the galvanostatic charge-discharge data at a current density of 3 mA cm-2 is 8.65 F cm-2 (216.16 F g-1). The obtained capacitances are higher than the capacitances of MnO2-based electrodes of the same active mass reported in the literature. The approach developed in this investigation is simple compared to other techniques used for the fabrication of electrodes with high active mass. It offers advantages of using a biocompatible RL biosurfactant.
Collapse
Affiliation(s)
| | | | - Igor Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada; (W.Y.); (W.L.)
| |
Collapse
|
4
|
Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus. World J Microbiol Biotechnol 2021; 37:193. [PMID: 34642826 DOI: 10.1007/s11274-021-03160-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
The antimicrobial efficacy of rhamnolipid is well established against a wide range of pathogens. However little is known about the enhancement of antimicrobial efficacy of rhamnolipid in the form of nanoparticles. With a curiosity of enhancing antimicrobial activity, a study has been carried out to evaluate the antimicrobial efficacy of rhamnolipid-coated zinc oxide nanoparticles. The zinc oxide nanoparticles were synthesized with rhamnolipid, produced by Pseudomonas aeruginosa JS29. The rhamnolipid-coated zinc oxide nanoparticles were characterized by FTIR, XRD, TGA, TEM, and SAED. The antimicrobial and antibiofilm efficacy of the nanoparticles was evaluated against Staphylococcus aureus MTCC 96. FTIR, XRD, TEM, and SAED analyses confirmed that the nanoparticles contain both rhamnolipid and zinc as constituents and are polycrystalline with sizes ranging from 40 to 50 nm. At a concentration of 250 µg/ml, rhamnolipid-coated zinc oxide nanoparticles exhibited 80% growth inhibition of the pathogen. Again, at the same concentration, the nanoparticle was observed to inhibit 78% of biofilm formation while disrupting 100% of preformed biofilm. The nanoparticles demonstrated an enhanced inhibitory and antibiofilm efficacy against the pathogen compared to the individual effect of both rhamnolipid and zinc oxide nanoparticles. With the established non-toxicity of rhamnolipid-coated zinc oxide nanoparticles in fibroblast cell lines, the nanoparticles could be a promising pharmaceutical alternative.
Collapse
|
5
|
Nitschke M, Marangon CA. Microbial surfactants in nanotechnology: recent trends and applications. Crit Rev Biotechnol 2021; 42:294-310. [PMID: 34167395 DOI: 10.1080/07388551.2021.1933890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interest in nano-sized materials to develop novel products has increased exponentially in the last decade, together with the search for green methods for their synthesis. An alternative to contribute to a more sustainable approach is the use of microbial-derived molecules to assist nanomaterial synthesis. In this sense, biosurfactants (BSs) have emerged as eco-friendly substitutes in nano-sized materials preparation. The inherent amphiphilic and self-assembly character of BSs associated with their low eco-toxicity, biodegradability, biocompatibility, structural diversity, biological activity, and production from renewable resources are potential advantages over chemically-derived surfactants. In nanotechnology, these versatile molecules play multiple roles. In nanoparticle (NP) synthesis, they act as capping and reducing agents and they also provide self-assembly structures to encapsulation, functionalization, or templates and act as emulsifiers in nanoemulsions. Moreover, BSs can also play as active compounds owing to their intrinsic biological properties. This review presents the recent trends in the development of BS-based nanostructures and their biomedical and environmental applications. Fundamental aspects regarding their antimicrobial and anticancer activities are also discussed.
Collapse
Affiliation(s)
- Marcia Nitschke
- Departamento Físico-Química, Instituto de Química de São Carlos (IQSC) - USP, São Carlos, Brazil
| | | |
Collapse
|
6
|
Biosurfactant-mediated biosynthesis of CuO nanoparticles and their antimicrobial activity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01766-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Eslami P, Hajfarajollah H, Bazsefidpar S. Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv 2020; 10:34014-34032. [PMID: 35519061 PMCID: PMC9056861 DOI: 10.1039/d0ra04953k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Rhamnolipid (RL) biosurfactant which is produced by Pseudomonas species is one of the most effective surface-active agents investigated in the literature. Over the years, many efforts have been made and an array of techniques has been developed for the isolation of RL produced strains as well as RL homolog characterization. Reports show that RL productivity by the best-known producer, Pseudomonas aeruginosa, is very diverse, from less than 1 gr/l to more than 200 g L-1. There are some major parameters that can affect RL productivity. These are culture conditions, medium composition, the mode of operation (batch, fed-batch and continuous), bioengineering/gene manipulation and finally extraction methods. The present paper seeks to provide a comprehensive overview on the production of rhamnolipid biosurfactant by different species of Pseudomonas bacteria. In addition, we have extensively reviewed their potential for possible future applications.
Collapse
Affiliation(s)
- Parisa Eslami
- Amirkabir University of Technology, Chemical Engineering Department Iran
| | - Hamidreza Hajfarajollah
- Amirkabir University of Technology, Chemical Engineering Department Iran
- Chemistry and Chemical Engineering Research Center of Iran, Chemical Engineering Department Iran +98 2122734406
| | | |
Collapse
|
8
|
Antioxidant and Quorum Quenching Activity against Pseudomonas aeruginosa SU-18 of some Edible Fruit Juices. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Christopher FC, Ponnusamy SK, Ganesan JJ, Ramamurthy R. Investigating the prospects of bacterial biosurfactants for metal nanoparticle synthesis - a comprehensive review. IET Nanobiotechnol 2019; 13:243-249. [PMID: 31053685 PMCID: PMC8676648 DOI: 10.1049/iet-nbt.2018.5184] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 11/04/2023] Open
Abstract
Establishing biological synthesis of nanoparticles is increasing nowadays in the field of nanotechnology. The search for an optimal source with durability, stability, capacity to withstand higher environmental conditions with excellent characteristics is yet to meet. Consequently, there is need to create an eco-friendly strategy for metal nanoparticle synthesis. One approach investigated in this review is the use of biosurfactants to enhance the synthesis biologically. In comparison with the other technologies, biosurfactants are less toxic and exhibit higher properties. This method is different from the conventional practice like physical and chemical methods. Several research studies represented that the biosurfactant influences the production of nanoparticles about 2-50 nm. In this manner, the research towards the biosurfactant has raised. This review also addressed the feasibility of biosurfactant and their benefits in the synthesis of metallic nanoparticles. The findings from this review can recommend a conceivable use of biosurfactant as a source for metal nanoparticle synthesis.
Collapse
Affiliation(s)
| | - Senthil Kumar Ponnusamy
- SSN-Centre for Radiation, Environmental Science and Technology (SSN-CREST), SSN College of Engineering, Chennai 603110, India.
| | - Janet Joshiba Ganesan
- Department of Chemical Engineering, SSN College of Engineering, Chennai 603110, India
| | - Racchana Ramamurthy
- Department of Chemical Engineering, SSN College of Engineering, Chennai 603110, India
| |
Collapse
|
10
|
Chellamuthu P, Tran F, Silva KPT, Chavez MS, El-Naggar MY, Boedicker JQ. Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials. Microb Biotechnol 2018; 12:161-172. [PMID: 30369058 PMCID: PMC6302716 DOI: 10.1111/1751-7915.13320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022] Open
Abstract
Microbes naturally build nanoscale structures, including structures assembled from inorganic materials. Here, we combine the natural capabilities of microbes with engineered genetic control circuits to demonstrate the ability to control biological synthesis of chalcogenide nanomaterials in a heterologous host. We transferred reductase genes from both Shewanella sp. ANA-3 and Salmonella enterica serovar Typhimurium into a heterologous host (Escherichia coli) and examined the mechanisms that regulate the properties of biogenic nanomaterials. Expression of arsenate reductase genes and thiosulfate reductase genes in E. coli resulted in the synthesis of arsenic sulfide nanomaterials. In addition to processing the starting materials via redox enzymes, cellular components also nucleated the formation of arsenic sulfide nanomaterials. The shape of the nanomaterial was influenced by the bacterial culture, with the synthetic E. coli strain producing nanospheres and conditioned media or cultures of wild-type Shewanella sp. producing nanofibres. The diameter of these nanofibres also depended on the biological context of synthesis. These results demonstrate the potential for biogenic synthesis of nanomaterials with controlled properties by combining the natural capabilities of wild microbes with the tools from synthetic biology.
Collapse
Affiliation(s)
- Prithiviraj Chellamuthu
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Frances Tran
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kalinga Pavan T Silva
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Rodrigues LR. Microbial surfactants: Fundamentals and applicability in the formulation of nano-sized drug delivery vectors. J Colloid Interface Sci 2015; 449:304-16. [DOI: 10.1016/j.jcis.2015.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/29/2022]
|
12
|
Płaza GA, Chojniak J, Banat IM. Biosurfactant mediated biosynthesis of selected metallic nanoparticles. Int J Mol Sci 2014; 15:13720-37. [PMID: 25110864 PMCID: PMC4159821 DOI: 10.3390/ijms150813720] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022] Open
Abstract
Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance.
Collapse
Affiliation(s)
- Grażyna A Płaza
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas,6 Kossutha Str., 40-844 Katowice, Poland.
| | - Joanna Chojniak
- Department of Environmental Microbiology, Institute for Ecology of Industrial Areas,6 Kossutha Str., 40-844 Katowice, Poland.
| | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, N. Ireland, UK.
| |
Collapse
|
13
|
Janakiraman N, Mohan A, Kannan A, Pennathur G. Resonance Energy Transfer between protein and rhamnolipid capped ZnS quantum dots: application in in-gel staining of proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 95:478-482. [PMID: 22580141 DOI: 10.1016/j.saa.2012.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 03/19/2012] [Accepted: 04/07/2012] [Indexed: 05/31/2023]
Abstract
The interaction of proteins with quantum dots is an interesting field of research. These interactions occur at the nanoscale. We have probed the interaction of Bovine Serum Albumin (BSA) and Candida rugosa lipase (CRL) with rhamnolipid capped ZnS (RhlZnSQDs) using absorption and fluorescence spectroscopy. Optical studies on mixtures of RhlZnSQDs and proteins resulted in Förster's Resonance Energy Transfer (FRET) from proteins to QDs. This phenomenon has been exploited to detect proteins in agarose gel electrophoresis. The activity of the CRL was unaffected on the addition of QDs as revealed by zymography.
Collapse
|
14
|
Kremser G, Rath T, Kunert B, Edler M, Fritz-Popovski G, Resel R, Letofsky-Papst I, Grogger W, Trimmel G. Structural characterisation of alkyl amine-capped zinc sulphide nanoparticles. J Colloid Interface Sci 2011; 369:154-9. [PMID: 22239986 PMCID: PMC3270220 DOI: 10.1016/j.jcis.2011.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 11/25/2022]
Abstract
Nanoparticles capped with amine ligands with different steric properties, dodecylamine and oleylamine, respectively, are investigated in the solid state as well as in solution. A combined X-ray diffraction, small angle X-ray scattering and electron microscopy investigation showed that the nanoparticles exhibit the sphalerite modification of ZnS as crystal phase with a diameter of 3-5 nm. A close packing of the monocrystalline nanoparticles in the solid state is observed. However, in the dodecylamine sample, besides spherical particles, a fraction of the nanoparticles is elongated. The nanoparticles are readily resoluble in apolar solvents like hexane. Dynamic light scattering (DLS) and SAXS investigations of the solutions reveal that the nanoparticles are dissolved as singular particles. In the case of oleylamine-capped ZnS, a defined core-shell structure with a ZnS core with a diameter of 4 nm and an organic shell with a thickness of approximately 2 nm have been found. Dodecylamine-capped nanoparticles slightly tend to form agglomerates with a diameter of approximately 40 nm.
Collapse
Affiliation(s)
- Gabriele Kremser
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Graz, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|