1
|
Song X, Yu S, Zhao L, Guo Y, Ren X, Ma H, Wang S, Luo C, Li Y, Wei Q. Efficient ABEI-Dissolved O 2-Ce(III, IV)-MOF Ternary Electrochemiluminescent System Combined with Self-Assembled Microfluidic Chips for Bioanalysis. Anal Chem 2022; 94:9363-9371. [PMID: 35723440 DOI: 10.1021/acs.analchem.2c01199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A signal-amplified electrochemiluminescent (ECL) sensor chip was developed for sensitive analysis of procalcitonin (PCT). Herein, we first prepared a self-enhanced luminophore, which enhanced ECL responses through intramolecular reactions. Second, Au-Pd bimetallic nanocrystals and mixed-valence Ce-based metal-organic frameworks (MOFs) were introduced as co-reaction promoters to facilitate the reduction of dissolved O2. Based on the synergistic catalysis of Au and Pd, the spontaneous cyclic reaction of Ce(III)/Ce(IV), and the high electrochemical active surface area of Ce(III, IV) MOF, a large number of superoxide anion radicals (O2•-) and hydroxyl radicals (OH•) were produced. Therefore, the luminescence efficiency of N-(aminobutyl)-N-(ethylisoluminol)-dissolved O2 (ABEI-O2) systems were greatly improved, providing a new prospect for the application of dissolved O2 in ECL analysis. In addition, the affinity peptide ligands were used for the directional connection of antibodies to provide protection for the bioactivity of the proposed sensor. Finally, the microfluidic technology was applied to ECL analysis to integrate the three-electrode detection system into the self-assembled microfluidic chip, which realized the automation and portability of the detection process. The developed sensor showed high sensitivity for PCT detection with a detection limit of 3.46 fg/mL, which possessed positive significance for the clinical diagnosis of sepsis.
Collapse
Affiliation(s)
- Xianzhen Song
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Lu Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Yujian Guo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Shoufeng Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Chuannan Luo
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China.,Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Bai P, Zhou T, Wang X, Liu X, Wang Y, Wang Y, Muhumuza E, Zhang Y, Wu P. Remarkably improved performance of Au-Pd/γ-Al2O3 catalyst in benzyl alcohol oxidation by mercapto-propyl-trimethoxysilane modification. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Wu P, He Z, Liu Y, Song L, Wang C, Muhumuza E, Bai P, Zhao L, Mintova S, Yan Z. Compatibility between Activity and Selectivity in Catalytic Oxidation of Benzyl Alcohol with Au-Pd Nanoparticles through Redox Switching of SnO x. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49780-49792. [PMID: 34637263 DOI: 10.1021/acsami.1c10207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A balance between catalytic activity and product selectivity remains a dilemma for the partial oxidation processes because the products are prone to be overoxidized. In this work, we report on the partial oxidation of benzyl alcohol using a modified catalyst consisting of nanosized Au-Pd particles (NPs) with tin oxide (SnOx) deposited on a mesoporous silica support. We found that the SnOx promotes the autogenous reduction of PdO to active Pd0 species on the Au-Pd NP catalyst (SnOx@AP-ox) before H2 reduction, which is due to the high oxophilicity of Sn. The presence of active Pd0 species and the enhancement of oxygen transfer by SnOx led to high catalytic activity. The benzaldehyde selectivity was enhanced with the increase of SnOx content on catalyst SnOx@AP-ox, which is ascribed to the modulated affinity of reactants and products on the catalyst surface through the redox switching of Sn species. After H2 reduction, SnOx was partially reduced and Au-Pd-Sn alloy was formed. The formation of Au-Pd-Sn alloy weakened both the catalytic synergy of Au-Pd alloy NPs and the adsorption of benzyl alcohol on the reduced catalyst, thus leading to low catalytic activity.
Collapse
Affiliation(s)
- Pingping Wu
- State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhengke He
- State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yonghui Liu
- School of Materials Science and Engineering, Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Lei Song
- State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunzheng Wang
- State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Edgar Muhumuza
- State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Peng Bai
- State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lianming Zhao
- School of Materials Science and Engineering, Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Svetlana Mintova
- Normandie University, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, CNPC Key Laboratory of Catalysis, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
4
|
Yan W, Zhang D, Sun Y, Zhou Z, Du Y, Du Y, Li Y, Liu M, Zhang Y, Shen J, Jin X. Structural sensitivity of heterogeneous catalysts for sustainable chemical synthesis of gluconic acid from glucose. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63590-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|