1
|
Costa RS, Vinga S. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data. Biotechnol Prog 2018; 34:1344-1354. [PMID: 30294889 DOI: 10.1002/btpr.2700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/14/2018] [Indexed: 11/11/2022]
Abstract
Over the last years, several genome-scale metabolic models (GEMs) and kinetic models of Escherichia coli were published. Their predictive performance varies according to the evaluation metric considered, the computational simulation methods used, and the type/quality of experimental data available. However, the GEM approach is often not compared with the kinetic modeling framework. Also, the different genome-scale reconstruction versions and simulation methods of mutant phenotypes are usually not validated to predict intracellular fluxes using large experimental datasets. Here, we intended to (i) systematically evaluate the prediction performance of three E. coli GEMs (iJR904, iAF1260, and iJO1366) available in the literature according to predictive growth metrics (intracellular flux distribution); (ii) assess the reliability of a E. coli GEM in the prediction of gene knockout phenotypes when different simulation methods (parsimonious flux balance analysis, Minimization of Metabolic Adjustment, linear version of MoMA, Regulatory on/off minimization, and Minimization of Metabolites Balance) are used; and finally (iii) investigate the flux distribution predictive power of the constrained-based modeling approach (selected stoichiometric GEM) and compare it with the kinetic modeling approach (two published kinetic models) for E. coli central metabolism, in order to assess their accuracy. Results show that the phenotype predictions were not significantly sensitive to the metabolic models, although the GEM iAF1260 was more accurate in the prediction of central carbon fluxes at low dilution rates. Furthermore, we observed that the choice of the appropriate simulation method of mutant phenotypes depends on the biological question to be addressed. In terms of the two modeling approaches, none outperformed the other for all the tested scenarios. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1344-1354, 2018.
Collapse
Affiliation(s)
- Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.,INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Kim OD, Rocha M, Maia P. A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for Metabolic Engineering. Front Microbiol 2018; 9:1690. [PMID: 30108559 PMCID: PMC6079213 DOI: 10.3389/fmicb.2018.01690] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/06/2018] [Indexed: 12/03/2022] Open
Abstract
Mathematical modeling is a key process to describe the behavior of biological networks. One of the most difficult challenges is to build models that allow quantitative predictions of the cells' states along time. Recently, this issue started to be tackled through novel in silico approaches, such as the reconstruction of dynamic models, the use of phenotype prediction methods, and pathway design via efficient strain optimization algorithms. The use of dynamic models, which include detailed kinetic information of the biological systems, potentially increases the scope of the applications and the accuracy of the phenotype predictions. New efforts in metabolic engineering aim at bridging the gap between this approach and other different paradigms of mathematical modeling, as constraint-based approaches. These strategies take advantage of the best features of each method, and deal with the most remarkable limitation—the lack of available experimental information—which affects the accuracy and feasibility of solutions. Parameter estimation helps to solve this problem, but adding more computational cost to the overall process. Moreover, the existing approaches include limitations such as their scalability, flexibility, convergence time of the simulations, among others. The aim is to establish a trade-off between the size of the model and the level of accuracy of the solutions. In this work, we review the state of the art of dynamic modeling and related methods used for metabolic engineering applications, including approaches based on hybrid modeling. We describe approaches developed to undertake issues regarding the mathematical formulation and the underlying optimization algorithms, and that address the phenotype prediction by including available kinetic rate laws of metabolic processes. Then, we discuss how these have been used and combined as the basis to build computational strain optimization methods for metabolic engineering purposes, how they lead to bi-level schemes that can be used in the industry, including a consideration of their limitations.
Collapse
Affiliation(s)
- Osvaldo D Kim
- SilicoLife Lda, Braga, Portugal.,Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | - Miguel Rocha
- Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | | |
Collapse
|
3
|
Zieringer J, Takors R. In Silico Prediction of Large-Scale Microbial Production Performance: Constraints for Getting Proper Data-Driven Models. Comput Struct Biotechnol J 2018; 16:246-256. [PMID: 30105090 PMCID: PMC6077756 DOI: 10.1016/j.csbj.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Industrial bioreactors range from 10.000 to 700.000 L and characteristically show different zones of substrate availabilities, dissolved gas concentrations and pH values reflecting physical, technical and economic constraints of scale-up. Microbial producers are fluctuating inside the bioreactors thereby experiencing frequently changing micro-environmental conditions. The external stimuli induce responses on microbial metabolism and on transcriptional regulation programs. Both may deteriorate the expected microbial production performance in large scale compared to expectations deduced from ideal, well-mixed lab-scale conditions. Accordingly, predictive tools are needed to quantify large-scale impacts considering bioreactor heterogeneities. The review shows that the time is right to combine simulations of microbial kinetics with calculations of large-scale environmental conditions to predict the bioreactor performance. Accordingly, basic experimental procedures and computational tools are presented to derive proper microbial models and hydrodynamic conditions, and to link both for bioreactor modeling. Particular emphasis is laid on the identification of gene regulatory networks as the implementation of such models will surely gain momentum in future studies.
Collapse
|
4
|
Dvořák P, Nikel PI, Damborský J, de Lorenzo V. Bioremediation 3 . 0 : Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 2017; 35:845-866. [DOI: 10.1016/j.biotechadv.2017.08.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
|
5
|
Costa RS, Hartmann A, Vinga S. Kinetic modeling of cell metabolism for microbial production. J Biotechnol 2015; 219:126-41. [PMID: 26724578 DOI: 10.1016/j.jbiotec.2015.12.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/25/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations.
Collapse
Affiliation(s)
- Rafael S Costa
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Andras Hartmann
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Matsuoka Y, Shimizu K. Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-014-0031-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Simultaneous parameters identifiability and estimation of an E. coli metabolic network model. BIOMED RESEARCH INTERNATIONAL 2015; 2015:454765. [PMID: 25654103 PMCID: PMC4303013 DOI: 10.1155/2015/454765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 01/28/2023]
Abstract
This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.
Collapse
|
8
|
Willemsen AM, Hendrickx DM, Hoefsloot HCJ, Hendriks MMWB, Wahl SA, Teusink B, Smilde AK, van Kampen AHC. MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis. MOLECULAR BIOSYSTEMS 2015; 11:137-45. [DOI: 10.1039/c4mb00510d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper presents MetDFBA, a new approach incorporating experimental metabolomics time-series into constraint-based modeling. The method can be used for hypothesis testing and predicting dynamic flux profiles.
Collapse
Affiliation(s)
- A. Marcel Willemsen
- Bioinformatics Laboratory
- Department of Clinical Epidemiology
- Biostatistics and Bioinformatics
- Academical Medical Centre
- Amsterdam
| | - Diana M. Hendrickx
- Biosystems Data Analysis
- Swammerdam Institute for Life Sciences
- University of Amsterdam
- The Netherlands
- Netherlands Metabolomics Centre
| | - Huub C. J. Hoefsloot
- Biosystems Data Analysis
- Swammerdam Institute for Life Sciences
- University of Amsterdam
- The Netherlands
- Netherlands Metabolomics Centre
| | | | - S. Aljoscha Wahl
- Kluyver Centre for Genomics of Industrial Fermentation
- Biotechnology Department
- Delft University of Technology
- The Netherlands
| | - Bas Teusink
- Systems Bioinformatics
- Centre for Integrative Bioinformatics
- Free University of Amsterdam
- The Netherlands
| | - Age K. Smilde
- Biosystems Data Analysis
- Swammerdam Institute for Life Sciences
- University of Amsterdam
- The Netherlands
- Netherlands Metabolomics Centre
| | - Antoine H. C. van Kampen
- Bioinformatics Laboratory
- Department of Clinical Epidemiology
- Biostatistics and Bioinformatics
- Academical Medical Centre
- Amsterdam
| |
Collapse
|
9
|
Abstract
The identification of suitable model parameters for biochemical reactions has been recognized as a quite difficult endeavor. Parameter values from literature or experiments can often not directly be combined in complex reaction systems. Nature-inspired optimization techniques can find appropriate sets of parameters that calibrate a model to experimentally obtained time series data. We present SBMLsimulator, a tool that combines the Systems Biology Simulation Core Library for dynamic simulation of biochemical models with the heuristic optimization framework EvA2. SBMLsimulator provides an intuitive graphical user interface with various options as well as a fully-featured command-line interface for large-scale and script-based model simulation and calibration. In a parameter estimation study based on a published model and artificial data we demonstrate the capability of SBMLsimulator to identify parameters. SBMLsimulator is useful for both, the interactive simulation and exploration of the parameter space and for the large-scale model calibration and estimation of uncertain parameter values.
Collapse
|
10
|
Calderwood A, Morris RJ, Kopriva S. Predictive sulfur metabolism - a field in flux. FRONTIERS IN PLANT SCIENCE 2014; 5:646. [PMID: 25477892 PMCID: PMC4235266 DOI: 10.3389/fpls.2014.00646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/02/2014] [Indexed: 05/08/2023]
Abstract
The key role of sulfur metabolites in response to biotic and abiotic stress in plants, as well as their importance in diet and health has led to a significant interest and effort in trying to understand and manipulate the production of relevant compounds. Metabolic engineering utilizes a set of theoretical tools to help rationally design modifications that enhance the production of a desired metabolite. Such approaches have proven their value in bacterial systems, however, the paucity of success stories to date in plants, suggests that challenges remain. Here, we review the most commonly used methods for understanding metabolic flux, focusing on the sulfur assimilatory pathway. We highlight known issues with both experimental and theoretical approaches, as well as presenting recent methods for integrating different modeling strategies, and progress toward an understanding of flux at the whole plant level.
Collapse
Affiliation(s)
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes CentreNorwich, UK
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne BiocenterCologne, Germany
| |
Collapse
|
11
|
Costa RS, Veríssimo A, Vinga S. KiMoSys: a web-based repository of experimental data for KInetic MOdels of biological SYStems. BMC SYSTEMS BIOLOGY 2014; 8:85. [PMID: 25115331 PMCID: PMC4236735 DOI: 10.1186/s12918-014-0085-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/11/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The kinetic modeling of biological systems is mainly composed of three steps that proceed iteratively: model building, simulation and analysis. In the first step, it is usually required to set initial metabolite concentrations, and to assign kinetic rate laws, along with estimating parameter values using kinetic data through optimization when these are not known. Although the rapid development of high-throughput methods has generated much omics data, experimentalists present only a summary of obtained results for publication, the experimental data files are not usually submitted to any public repository, or simply not available at all. In order to automatize as much as possible the steps of building kinetic models, there is a growing requirement in the systems biology community for easily exchanging data in combination with models, which represents the main motivation of KiMoSys development. DESCRIPTION KiMoSys is a user-friendly platform that includes a public data repository of published experimental data, containing concentration data of metabolites and enzymes and flux data. It was designed to ensure data management, storage and sharing for a wider systems biology community. This community repository offers a web-based interface and upload facility to turn available data into publicly accessible, centralized and structured-format data files. Moreover, it compiles and integrates available kinetic models associated with the data.KiMoSys also integrates some tools to facilitate the kinetic model construction process of large-scale metabolic networks, especially when the systems biologists perform computational research. CONCLUSIONS KiMoSys is a web-based system that integrates a public data and associated model(s) repository with computational tools, providing the systems biology community with a novel application facilitating data storage and sharing, thus supporting construction of ODE-based kinetic models and collaborative research projects.The web application implemented using Ruby on Rails framework is freely available for web access at http://kimosys.org, along with its full documentation.
Collapse
Affiliation(s)
- Rafael S Costa
- Instituto de Engenharia de Sistemas e Computadores, Investigacão e Desenvolvimento (INESC-ID), R Alves Redol 9, Lisboa, 1000-029, Portugal
- Center for Intelligent Systems, LAETA,IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - André Veríssimo
- Center for Intelligent Systems, LAETA,IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - Susana Vinga
- Center for Intelligent Systems, LAETA,IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
| |
Collapse
|
12
|
Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M. Kinetic models in industrial biotechnology - Improving cell factory performance. Metab Eng 2014; 24:38-60. [PMID: 24747045 DOI: 10.1016/j.ymben.2014.03.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 11/16/2022]
Abstract
An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed.
Collapse
Affiliation(s)
- Joachim Almquist
- Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | - Marija Cvijovic
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden; Mathematical Sciences, University of Gothenburg, SE-412 96 Göteborg, Sweden
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Federale de Lausanne, CH 1015 Lausanne, Switzerland
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Mats Jirstrand
- Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden
| |
Collapse
|
13
|
Costa RS, Nguyen S, Hartmann A, Vinga S. Exploring the Cellular Objective in Flux Balance Constraint-Based Models. COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY 2014. [DOI: 10.1007/978-3-319-12982-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Abstract
Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic information. Here, we introduce structural metabolic control as a framework to examine individual reactions' potential to control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a metabolic function is determined using flux balance analysis (FBA). We examine structural metabolic control on the example of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC). This framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to assign “share of control” to individual reactions with respect to metabolic functions and environmental conditions. A comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate and ATP under various respiratory conditions. Insight into the functioning of metabolic control to meet changing demands is a first step in rational engineering of biological systems towards a desired behavior. Metabolic control analysis provides the means to examine the impact of change of reaction fluxes on a specific target flux based on kinetic modeling, but suffers from limitations of the kinetic approach. Here, we introduce and analyze structural metabolic control as a framework to overcome these limitations. We utilize functional centrality, a framework based on the Shapley value from cooperative game theory and flux balance analysis, to determine the contribution of individual reactions to the functions accomplished by a metabolic network. These contributions, in turn, depend on the control exerted on the remaining network. Functional centrality provides the mathematical means to gain further understanding of metabolic control. The potential applications range from facilitating strategies of rational strain design to drug target identification.
Collapse
|