1
|
Awaysheh A, Wilcke J, Elvinger F, Rees L, Fan W, Zimmerman KL. Review of Medical Decision Support and Machine-Learning Methods. Vet Pathol 2019; 56:512-525. [DOI: 10.1177/0300985819829524] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Machine-learning methods can assist with the medical decision-making processes at the both the clinical and diagnostic levels. In this article, we first review historical milestones and specific applications of computer-based medical decision support tools in both veterinary and human medicine. Next, we take a mechanistic look at 3 archetypal learning algorithms—naive Bayes, decision trees, and neural network—commonly used to power these medical decision support tools. Last, we focus our discussion on the data sets used to train these algorithms and examine methods for validation, data representation, transformation, and feature selection. From this review, the reader should gain some appreciation for how these decision support tools have and can be used in medicine along with insight on their inner workings.
Collapse
Affiliation(s)
- Abdullah Awaysheh
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - Jeffrey Wilcke
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, VA, USA
| | - François Elvinger
- Virginia Tech, Blacksburg, VA, USA
- Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | - Loren Rees
- Department of Business Information Technology, Pamplin College of Business, Blacksburg, VA, USA
| | - Weiguo Fan
- Department of Business Information Technology, Pamplin College of Business, Blacksburg, VA, USA
| | - Kurt L. Zimmerman
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Blacksburg, VA, USA
| |
Collapse
|