1
|
Lai T, Qiu H, Si L, Zhen Y, Chu D, Guo R. Long noncoding RNA BMPR1B-AS1 facilitates endometrial cancer cell proliferation and metastasis by sponging miR-7-2-3p to modulate the DCLK1/Akt/NF-κB pathway. Cell Cycle 2022; 21:1599-1618. [PMID: 35404759 PMCID: PMC9291686 DOI: 10.1080/15384101.2022.2060003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Endometrial carcinoma (EC) originates from the endometrium and is one of the most common tumors in female patients, and its incidence has continued to increase in recent decades. LncRNAs are involved in the pathogenesis and metastasis of a variety of malignant tumors, which indicates that lncRNAs can be used as tumor diagnostic markers and potential therapeutic targets. In this study, we analyzed the RNA transcripts of EC cells from The Cancer Genome Atlas (TCGA) and first reported a novel lncRNA, BMPR1B-AS1, that was more highly expressed in endometrial cancer tissues than in adjacent tissues, and BMPR1B-AS1 could promote endometrial cancer cell proliferation and metastasis. Bioinformatics prediction and experimental results both suggested that BMPR1B-AS1 could modulate the malignant behaviors of endometrial cancer cell lines by sponging miR-7-2-3p to modulate DCLK1, and a DCLK1 inhibitor blocked the activation of the PI3K/Akt/NF-κB signaling pathway. Collectively, this study suggests that the BMPR1B-AS1/miR-7-2-3p/DCLK1 axis contributes to the proliferation and metastasis of endometrial cancer cells via the PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Tianjiao Lai
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China.,Academy of Medical Science, Zhengzhou University, Henan, Zhengzhou China
| | - Haifeng Qiu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Lulu Si
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Yu Zhen
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China.,Academy of Medical Science, Zhengzhou University, Henan, Zhengzhou China
| | - Danxia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan, China
| |
Collapse
|
2
|
Lu Y, Lu H, Yang X, Song W. BarH-like homeobox 1 induces the progression of cell malignant phenotype in endometrial carcinoma through the regulation of ERK/MEK signaling pathway. Reprod Biol 2021; 21:100502. [PMID: 33784561 DOI: 10.1016/j.repbio.2021.100502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 01/04/2023]
Abstract
The aim of this article was to assess whether and how BARX1 affects the progression of malignant phenotype of endometrial carcinoma (EC) cells. BARX1 levels and its prognostic value were evaluated using the EC-related RNA sequence dataset from The Cancer Genome Atlas (TCGA) database. Functional experiments were performed to evaluate the biological roles of BARX1 in EC HEC-1-A and KLE cells by silencing BARX1. BARX1 was upregulated in EC tissues according to the public database and in EC cells. High expression of BARX1 led to a poor prognosis and significantly related to clinical stage, pathological grade, death, histological subtypes, and menopause status in patients with EC. Silencing BARX1 notably suppressed the aggressive phenotypes of EC cells, as evidenced by inhibiting cells viability, growth, invasion and migration. Furthermore, depletion of BARX1 decreased the phosphorylation (p) levels of ERK and MEK, also reinforced the suppressive effects of ERK/MEK pathway blocker PD98059 on the p-ERK and p-MEK levels. Together, our results demonstrated that BARX1 functions as a carcinogen by regulating the cell viability, invasion, and migration at least partly through the ERK/MEK pathway.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, 255000, PR China
| | - Hongyan Lu
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, 255000, PR China
| | - Xin Yang
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, 255000, PR China
| | - Wenjun Song
- Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, 255000, PR China.
| |
Collapse
|
3
|
Epigenetic signature associated with thyroid cancer progression and metastasis. Semin Cancer Biol 2021; 83:261-268. [PMID: 33785448 DOI: 10.1016/j.semcancer.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.
Collapse
|
4
|
Gajda E, Grzanka M, Godlewska M, Gawel D. The Role of miRNA-7 in the Biology of Cancer and Modulation of Drug Resistance. Pharmaceuticals (Basel) 2021; 14:149. [PMID: 33673265 PMCID: PMC7918072 DOI: 10.3390/ph14020149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) are small non-coding RNA (ncRNA) molecules capable of regulating post-transcriptional gene expression. Imbalances in the miRNA network have been associated with the development of many pathological conditions and diseases, including cancer. Recently, miRNAs have also been linked to the phenomenon of multidrug resistance (MDR). MiR-7 is one of the extensively studied miRNAs and its role in cancer progression and MDR modulation has been highlighted. MiR-7 is engaged in multiple cellular pathways and acts as a tumor suppressor in the majority of human neoplasia. Its depletion limits the effectiveness of anti-cancer therapies, while its restoration sensitizes cells to the administered drugs. Therefore, miR-7 might be considered as a potential adjuvant agent, which can increase the efficiency of standard chemotherapeutics.
Collapse
Affiliation(s)
- Ewa Gajda
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Marlena Godlewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (E.G.); (M.G.)
| | - Damian Gawel
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
5
|
Pan Z, Miao L. Serum microRNA-592 serves as a novel potential biomarker for early diagnosis of colorectal cancer. Oncol Lett 2020; 20:1119-1126. [PMID: 32724351 PMCID: PMC7377022 DOI: 10.3892/ol.2020.11682] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-associated mortality worldwide. Currently, available diagnostic biomarkers are neither sensitive nor specific. Thus, the present study aimed to identify novel circulating microRNAs (miRNAs) as biomarkers for the early diagnosis of CRC. All samples were provided by The Second Affiliated Hospital of Nanjing Medical University (Nanjing, China). Analysis of the GSE108153 and GSE55139 datasets, downloaded from the Gene Expression Omnibus (GEO) database was performed using the online tool, GEO2R. Reverse transcription-quantitative PCR was performed to determine miR-592 expression in CRC tissues, cells and serums of patients. Subsequently, the diagnostic value of serum miR-592 was assessed via receiver operating characteristic (ROC) curve analysis. Both the assessment of clinical samples and bioinformatics analysis demonstrated that miR-592 expression levels were significantly upregulated in the tissues and serum of patients with CRC, suggesting that elevated serum miR-592 may be tumor-derived. ROC analysis indicated that serum miR-592 levels may differentiate patients with early stage CRC and advanced adenoma from healthy individuals, with area under the curve values of 0.801 and 0.747, respectively. Taken together, the results of the present study suggest that serum miR-592 may be implicated as a potential biomarker for the early diagnosis of CRC.
Collapse
Affiliation(s)
- Zhenguo Pan
- Department of Gastroenterology, Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China.,Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| | - Lin Miao
- Department of Gastroenterology, Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
6
|
Dai X, Wang Y, Dong X, Sheng M, Wang H, Shi J, Sheng Y, Liu L, Jiang Q, Chen Y, Wu B, Yang X, Cheng H, Kang C, Dong J. Downregulation of miRNA-146a-5p promotes malignant transformation of mesenchymal stromal/stem cells by glioma stem-like cells. Aging (Albany NY) 2020; 12:9151-9172. [PMID: 32452829 PMCID: PMC7288935 DOI: 10.18632/aging.103185] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) are promising carriers in cell-based therapies against central nervous system diseases, and have been evaluated in various clinical trials in recent years. However, bone marrow-derived MSCs (BMSCs) are reportedly involved in tumorigenesis initiated by glioma stem-like cells (GSCs). We therefore established three different orthotopic models of GSC-MSC interactions in vivo using dual-color fluorescence tracing. Cell sorting and micropipetting techniques were used to obtain highly proliferative MSC monoclones from each model, and these cells were identified as transformed MSC lines 1, 2 and 3. Nineteen miRNAs were upregulated and 24 miRNAs were downregulated in all three transformed MSC lines compared to normal BMSCs. Reduced miR-146a-5p expression in the transformed MSCs was associated with their proliferation, malignant transformation and overexpression of heterogeneous nuclear ribonucleoprotein D. These findings suggest that downregulation of miR-146a-5p leads to overexpression of its target gene, heterogeneous nuclear ribonucleoprotein D, thereby promoting malignant transformation of MSCs during interactions with GSCs. Given the risk that MSCs will undergo malignant transformation in the glioma microenvironment, targeted glioma therapies employing MSCs as therapeutic carriers should be considered cautiously.
Collapse
Affiliation(s)
- Xingliang Dai
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yunfei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuchen Dong
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Minfeng Sheng
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Haiyang Wang
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jia Shi
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yujing Sheng
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liang Liu
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qianqian Jiang
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yanming Chen
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Bingshan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun Dong
- Brain Tumor Lab, Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
7
|
Liu H, Zhu Z, Fang J, Liu T, Zhang Z, Zhao C, Pu X, Liu J. The ceRNA Network Has Potential Prognostic Value in Clear Cell Renal Cell Carcinoma: A Study Based on TCGA Database. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4830847. [PMID: 32685491 PMCID: PMC7335400 DOI: 10.1155/2020/4830847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/25/2020] [Indexed: 02/05/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a very common cancer in urology. Many evidences suggest that complex changed pathways take a nonnegligible part in the occurrence and development of ccRCC. Nevertheless, the underlying mechanism is not clear. In this study, the expression data between ccRCC and normal tissue samples in TCGA database were compared to distinguish differentially expressed genes (DEGs: mRNAs, miRNAs, and lncRNAs). Afterwards, we used GO enrichment and KEGG pathway enrichment analyses to explore the functions of these DEGs. We also found the correlation between three RNAs and created a competing endogenous RNA (ceRNA) network. Moreover, we used univariate Cox regression analysis to select DEGs that are connected with overall survival (OS) of ccRCC patients. We found 1652 mRNAs, 1534 lncRNAs, and 173 miRNAs that were distinguished in ccRCC compared with normal tissues. According to GO analysis, the maladjusted mRNAs are mainly concentrated in immune cell activation and kidney development, while according to KEGG, they are mainly concentrated in pathways related to cancer. A total of 5 mRNAs, 1 miRNA, and 4 lncRNAs were connected with patients' OS. In this article, a network of lncRNA-miRNA-mRNA was established; it is expected to be able to indicate possible molecular mechanisms for initial of ccRCC and provide a new viewpoint for diagnosis of ccRCC.
Collapse
Affiliation(s)
- Haosheng Liu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Guangzhou, China
| | - Zhaowen Zhu
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Guangzhou, China
| | - Jianxiong Fang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; The Second School of Clinical Medicine, Southern Medical University, Guangdong Guangzhou, China
| | - Tianqi Liu
- Shantou University Medical College, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Guangzhou, China
| | - Zhenhui Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences; The Second School of Clinical Medicine, Southern Medical University, Guangdong Guangzhou, China
| | - Chao Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangdong Guangzhou, China
| | - Xiaoyong Pu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Guangzhou, China
| |
Collapse
|