1
|
Davosir D, Šola I, Ludwig-Müller J, Šeruga Musić M. Flavescence Dorée Strain-Specific Impact on Phenolic Metabolism Dynamics in Grapevine ( Vitis vinifera) throughout the Development of Phytoplasma Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:189-199. [PMID: 38113060 PMCID: PMC10786034 DOI: 10.1021/acs.jafc.3c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Flavescence dorée phytoplasma (FDp) is a phytopathogenic bacterium associated with Grapevine yellowS disease, which causes heavy damage to viticultural production. Epidemiological data revealed that some FDp strains appear to be more widespread and aggressive. However, there is no data on mechanisms underlying the variable pathogenicity among strains. In this research, we employed chromatographic and spectrophotometric techniques to assess how two strains of FDp influence the levels of grapevine phenolic compounds, which are frequently utilized as indicative markers of stress conditions. The results pointed to the upregulation of all branches of phenolic metabolism through the development of infection, correlating with the increase in antioxidative capacity. The more aggressive strain M54 induced stronger downregulation of phenolics' accumulation at the beginning and higher upregulation by the end of the season than the less aggressive M38 strain. These findings reveal potential targets of FDp effectors and provide the first functional demonstration of variable pathogenicity between FDp strains, suggesting the need for future comparative genomic analyses of FDp strains as an important factor in exploring the management possibilities of FDp.
Collapse
Affiliation(s)
- Dino Davosir
- Department
of Biology, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
- Faculty
of Biology, Technische Universität
Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Ivana Šola
- Department
of Biology, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Jutta Ludwig-Müller
- Faculty
of Biology, Technische Universität
Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Martina Šeruga Musić
- Department
of Biology, Faculty of Science, University
of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
3
|
Pagliarani C, Gambino G, Ferrandino A, Chitarra W, Vrhovsek U, Cantu D, Palmano S, Marzachì C, Schubert A. Molecular memory of Flavescence dorée phytoplasma in recovering grapevines. HORTICULTURE RESEARCH 2020; 7:126. [PMID: 32821409 PMCID: PMC7395728 DOI: 10.1038/s41438-020-00348-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 05/04/2023]
Abstract
Flavescence dorée (FD) is a destructive phytoplasma disease of European grapevines. Spontaneous and cultivar-dependent recovery (REC) may occur in the field in FD-infected vines starting the year following the first symptoms. However, the biological underpinnings of this process are still largely unexplored. In this study, transcriptome sequencing (RNAseq), whole-genome bisulphite sequencing (WGBS) and metabolite analysis were combined to dissect molecular and metabolic changes associated to FD and REC in leaf veins collected in the field from healthy (H), FD and REC plants of the highly susceptible Vitis vinifera 'Barbera'. Genes involved in flavonoid biosynthesis, carbohydrate metabolism and stress responses were overexpressed in FD conditions, whereas transcripts linked to hormone and stilbene metabolisms were upregulated in REC vines. Accumulation patterns of abscisic acid and stilbenoid compounds analysed in the same samples confirmed the RNAseq data. In recovery conditions, we also observed the persistence of some FD-induced expression changes concerning inhibition of photosynthetic processes and stress responses. Several differentially expressed genes tied to those pathways also underwent post-transcriptional regulation by microRNAs, as outlined by merging our transcriptomic data set with a previously conducted smallRNAseq analysis. Investigations by WGBS analysis also revealed different DNA methylation marks between REC and H leaves, occurring within the promoters of genes tied to photosynthesis and secondary metabolism. The results allowed us to advance the existence of a "molecular memory" of FDp infection, involving alterations in the DNA methylation status of REC plants potentially related to transcriptional reprogramming events, in turn triggering changes in hormonal and secondary metabolite profiles.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Alessandra Ferrandino
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, TV Italy
| | - Urska Vrhovsek
- Fondazione Edmund Mach, Via Edmund Mach 1, 38010 San Michele all’Adige, TN Italy
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Andrea Schubert
- PlantStressLab, Department of Agricultural, Forestry and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO Italy
| |
Collapse
|