1
|
Sohn SI, Thamilarasan SK, Pandian S, Oh YJ, Ryu TH, Lee GS, Shin EK. Interspecific Hybridization of Transgenic Brassica napus and Brassica rapa-An Overview. Genes (Basel) 2022; 13:genes13081442. [PMID: 36011353 PMCID: PMC9407623 DOI: 10.3390/genes13081442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In nature, interspecific hybridization occurs frequently and can contribute to the production of new species or the introgression of beneficial adaptive features between species. It has great potential in agricultural systems to boost the process of targeted crop improvement. In the advent of genetically modified (GM) crops, it has a disadvantage that it involves the transgene escaping to unintended plants, which could result in non-specific weedy crops. Several crop species in the Brassica genus have close kinship: canola (Brassica napus) is an ancestral hybrid of B. rapa and B. oleracea and mustard species such as B. juncea, B. carinata, and B. nigra share common genomes. Hence, intraspecific hybridization among the Brassica species is most common, especially between B. napus and B. rapa. In general, interspecific hybrids cause numerous genetic and phenotypic changes in the parental lines. Consequently, their fitness and reproductive ability are also highly varied. In this review, we discuss the interspecific hybridization and reciprocal hybridization studies of B. napus and B. rapa and their potential in the controlled environment. Further, we address the fate of transgenes (herbicide resistance) and their ability to transfer to their progenies or generations. This could help us to understand the environmental influence of interspecific hybrids and how to effectively manage their transgene escape in the future.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Correspondence: ; Tel.: +82-063-238-4712
| | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Young-Ju Oh
- Institute for Future Environment Ecology Co., Ltd., Jeonju 54883, Korea
| | - Tae-Hun Ryu
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Eun-Kyoung Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
2
|
de Jong TJ, Escobedo Quevedo K, van der Veen-van Wijk CAM, Moshgani M. Performance of aneuploid backcross hybrids between the crop Brassica napus and its wild relative B. rapa. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:67-74. [PMID: 28921773 DOI: 10.1111/plb.12629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Crossings between the diploid wild Brassica rapa (AA, 2n = 20) and the tetraploid cultivar B. napus (AACC, 2n = 38) can readily be made. Backcrosses to the wild B. rapa (BC1 ) produce aneuploids with variable chromosome numbers between 20 and 29. How does survival and performance relate to DNA content of plants? Growth of the BC1 plants was measured in the lab. One plant in the F1 self-pollinated spontaneously and produced abundant F2 seeds that were also examined. The number of C-chromosomes was estimated from DNA values obtained with flow cytometry. Average DNA value of the BC1 was similar to that of the parents, which shows that C-chromosomes do not reduce success of pollen or embryos. The average DNA value in the F2 was 13% higher than in the F1 , suggesting that extra C-chromosomes facilitated gamete success and/or embryo survival. Under both optimal and drought stress conditions growth and survival of BC1 hybrids was similar to that of B. rapa. No significant correlations existed between growth or survival and DNA value. Aneuploid plants were not inferior under the conditions of the growth room and may persist in nature. We discuss other factors, such as herbivory, that could prevent hybrid establishment in the field.
Collapse
Affiliation(s)
- T J de Jong
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | | | | | - M Moshgani
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Department of Environmental Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| |
Collapse
|
3
|
Statement on a conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
4
|
Scientific Opinion on application (EFSA‐GMO‐BE‐2011‐101) for the placing on the market of herbicide‐tolerant genetically modified oilseed rape MON 88302 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
5
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape events Ms8, Rf3 and Ms8 × Rf3 for import, processing and feed uses in Austria. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
6
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Liu Y, Wei W, Ma K, Darmency H. Spread of introgressed insect-resistance genes in wild populations of Brassica juncea: a simulated in-vivo approach. Transgenic Res 2012; 22:747-56. [PMID: 23250587 DOI: 10.1007/s11248-012-9679-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
Introgression between transgenic, insect-resistant crops and their wild relatives could lead to a progressive increase of the frequency of resistant plants in wild populations. However, few studies help predict the impact on the population dynamics. To simulate the performance of introgressed insect-resistant plants of wild Brassica juncea, independently from the interspecific hybridization cost, healthy plants were cultivated in pure and mixed stands with damaged plants through cutting leaves in field experiments over two field seasons. As expected, resistant (healthy) plants held a competitive advantage when in competition with susceptible (damaged) plants. Individual biomass and seed production of both types of plants decreased as the percentage of resistant plants increased, so that the relative advantage of resistant plants increased. The combined effects of defoliation and competition on the individual performance of B. juncea were additive. Replacement series experiments confirmed this trend but did not show different seed output in pure stand of susceptible versus resistant plots. The total vegetative and reproductive production of mixed populations was not significantly different of that of pure populations. These results suggest that if a transgene for insect-resistance were to colonize wild populations, high herbivory of susceptible plant and low resource availability would facilitate the spread of resistant individuals. However, at the population level, the shift from an insect-susceptible to a predominantly resistant population would not result in exacerbated habitat colonization.
Collapse
Affiliation(s)
- Yongbo Liu
- State key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | | | | | | |
Collapse
|
8
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape events Ms8, Rf3 and Ms8 × Rf3 for import, processing and feed uses in Austria. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
10
|
de Jong TJ, Hesse E. Selection against hybrids in mixed populations of Brassica rapa and Brassica napus: model and synthesis. THE NEW PHYTOLOGIST 2012; 194:1134-1142. [PMID: 22463678 DOI: 10.1111/j.1469-8137.2012.04122.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pollen of the crop oilseed rape (Brassica napus, AACC) can cross-fertilize ovules of Brassica rapa (AA), which leads to an influx of unpaired C-chromosomes into wild B. rapa populations. The presence of such extra chromosomes is thought to be an indicator of introgression. Backcrosses and F(1) hybrids were found in Danish populations but, surprisingly, only F(1) hybrids were found in the UK and the Netherlands. Here, a model tests how the level of selection and biased vs unbiased transmission affect the population frequency of C-chromosomes. In the biased-transmission scenario the experimental results of the first backcross are extrapolated to estimate survival of gametes with different numbers of C-chromosomes from all crosses in the population. With biased transmission, the frequency of C-chromosomes always rapidly declines to zero. With unbiased transmission, the continued presence of plants with extra C-chromosomes depends on selection in the adult stage and we argue that this is the most realistic option for modeling populations. We suggest that selection in the field against plants with unpaired C-chromosomes is strong in Dutch and UK populations. The model highlights what we do not know and makes suggestions for further research on introgression.
Collapse
Affiliation(s)
- Tom J de Jong
- Plant Ecology & Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9516, 2300RA Leiden, the Netherlands
| | - Elze Hesse
- Plant Ecology & Phytochemistry, Institute of Biology Leiden, Leiden University, PO Box 9516, 2300RA Leiden, the Netherlands
| |
Collapse
|
11
|
Rader R, Howlett BG, Cunningham SA, Westcott DA, Edwards W. Spatial and temporal variation in pollinator effectiveness: do unmanaged insects provide consistent pollination services to mass flowering crops? J Appl Ecol 2011. [DOI: 10.1111/j.1365-2664.2011.02066.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Devos Y, Hails RS, Messéan A, Perry JN, Squire GR. Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified? Transgenic Res 2011; 21:1-21. [PMID: 21526422 DOI: 10.1007/s11248-011-9515-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of management.
Collapse
Affiliation(s)
- Yann Devos
- European Food Safety Authority, GMO Unit, Largo Natale Palli 5/A, 43121, Parma, Italy.
| | | | | | | | | |
Collapse
|
13
|
Rader R, Edwards W, Westcott DA, Cunningham SA, Howlett BG. Pollen transport differs among bees and flies in a human-modified landscape. DIVERS DISTRIB 2011. [DOI: 10.1111/j.1472-4642.2011.00757.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Himanen SJ, Nerg AM, Poppy GM, Stewart CN, Holopainen JK. Abiotic stress and transgenics: Implications for reproductive success and crop-to-wild gene flow in Brassicas. Basic Appl Ecol 2010. [DOI: 10.1016/j.baae.2010.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Warwick SI, Beckie HJ, Hall LM. Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann N Y Acad Sci 2009; 1168:72-99. [PMID: 19566704 DOI: 10.1111/j.1749-6632.2009.04576.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The main environmental concerns about genetically modified (GM) crops are the potential weediness or invasiveness in the crop itself or in its wild or weedy relatives as a result of transgene movement. Here we briefly review evidence for pollen- and seed-mediated gene flow from GM crops to non-GM or other GM crops and to wild relatives. The report focuses on the effect of abiotic and biotic stress-tolerance traits on plant fitness and their potential to increase weedy or invasive tendencies. An evaluation of weediness and invasive traits that contribute to the success of agricultural weeds and invasive plants was of limited value in predicting the effect of biotic and abiotic stress-tolerance GM traits, suggesting context-specific evaluation rather than generalizations. Fitness data on herbicide, insect, and disease resistance, as well as cold-, drought-, and salinity-tolerance traits, are reviewed. We describe useful ecological models predicting the effects of gene flow and altered fitness in GM crops and wild/weedy relatives, as well as suitable mitigation measures. A better understanding of factors controlling population size, dynamics, and range limits in weedy volunteer GM crop and related host or target weed populations is necessary before the effect of biotic and abiotic stress-tolerance GM traits can be fully assessed.
Collapse
Affiliation(s)
- Suzanne I Warwick
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseeds Research Centre, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
16
|
Letourneau DK, Hagen JA. Plant fitness assessment for wild relatives of insect resistant crops. ACTA ACUST UNITED AC 2009; 8:45-55. [PMID: 19419653 DOI: 10.1051/ebr/2008024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Risk assessments of new insect-resistant crops will need to estimate the potential for increased weediness of wild crop relatives as a consequence of gene flow. When field experiments are precluded by containment concerns, simulation experiments can identify hazards or measure expected differences between GMOs and parental plants. To measure plant fitness consequences of wild plant protection from Bt-susceptible herbivores, we used topical sprays of bacterial Bacillus thuringiensis larvacide (Bt) on Brassica rapa. Spontaneous crosses between B. rapa and Bt cole crops cannot be precluded, especially if adoption of Bt varieties leads to high exposure. We compared survivorship and seed output of B. rapa that were either protected from or exposed to Bt-susceptible Lepidoptera in the various conditions where hybrids are likely to occur: cultivated (disked) soil, uncultivated agricultural field margins, and nearby non-crop habitats (meadows and ruderal areas). The relative effect of herbivore protection varied among years, habitats, and populations of seedlings. In 2003-2004, Bt sprays did not result in lower herbivory on B. rapa, and plant fitness was not increased. However, in 2004-2006 B. rapa seedlings protected from Bt-susceptible herbivores lived 25% longer, on average, than those that were exposed to these herbivores. In addition, an average B. rapa seedling sprayed with Bt throughout its lifetime was twice as likely to produce siliques and had 251% of the seed output of a seedling exposed to herbivores. The fitness advantage of Bt-based plant protection was apparent in 2004-2005 in half the plants that experienced higher herbivory, and for 2005-2006, was more pronounced in agricultural habitats than in meadows with established, perennial vegetation and less disturbance. Positive effects of Bt-based plant protection and greater fitness in disturbed habitats suggest that crop-wild gene flow may benefit weed populations, and that field tests with herbivore exclusion/addition experiments are feasible alternatives when molecular containment of transgenes restricts field experiments with insect resistant crop-wild hybrids.
Collapse
Affiliation(s)
- Deborah K Letourneau
- Department of Environmental Studies, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
17
|
Haider N, Allainguillaume J, Wilkinson MJ. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment. Curr Genet 2009; 55:139-50. [PMID: 19198841 DOI: 10.1007/s00294-009-0230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 01/13/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
Environmental concerns over the cultivation of Genetically Modified (GM) crops largely centre on the ecological consequences following gene flow to wild relatives. One attractive solution is to deploy biocontainment measures that prevent hybridization. Chloroplast transformation is the most advanced biocontainment method but is compromised by chloroplast capture (hybridization through the maternal lineage). To date, however, there is a paucity of information on the frequency of chloroplast capture in the wild. Oilseed rape (Brassica napus, AACC) frequently hybridises with wild Brassica rapa (AA, as paternal parent) and yields B. rapa-like introgressed individuals after only two generations. In this study we used chloroplast CAPS markers that differentiate between the two species to survey wild and weedy populations of B. rapa for the capture of B. napus chloroplasts. A total of 464 B. rapa plants belonging to 14 populations growing either in close proximity to B. napus (i.e. sympatric <5 m) or else were allopatric from the crop (>1 km) were assessed for chloroplast capture using PCR (trnL-F) and CAPS (trnT-L-Xba I) markers. The screen revealed that two sympatric B. rapa populations included 53 plants that possessed the chloroplast of B. napus. In order to discount these B. rapa plants as F(1) crop-wild hybrids, we used a C-genome-specific marker and found that 45 out of 53 plants lacked the C-genome and so were at least second generation introgressants. The most plausible explanation is that these individuals represent multiple cases of chloroplast capture following introgressive hybridisation through the female germ line from the crop. The abundance of such plants in sympatric sites thereby questions whether the use of chloroplast transformation would provide a sufficient biocontainment for GM oilseed rape in the United Kingdom.
Collapse
|
18
|
Warwick SI, Légère A, Simard MJ, James T. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 2007; 17:1387-95. [PMID: 17971090 DOI: 10.1111/j.1365-294x.2007.03567.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The existence of transgenic hybrids resulting from transgene escape from genetically modified (GM) crops to wild or weedy relatives is well documented but the fate of the transgene over time in recipient wild species populations is still relatively unknown. This is the first report of the persistence and apparent introgression, i.e. stable incorporation of genes from one differentiated gene pool into another, of an herbicide resistance transgene from Brassica napus into the gene pool of its weedy relative, Brassica rapa, monitored under natural commercial field conditions. Hybridization between glyphosate-resistant [herbicide resistance (HR)]B. napus and B. rapa was first observed at two Québec sites, Ste Agathe and St Henri, in 2001. B. rapa populations at these two locations were monitored in 2002, 2003 and 2005 for the presence of hybrids and transgene persistence. Hybrid numbers decreased over the 3-year period, from 85 out of approximately 200 plants surveyed in 2002 to only five out of 200 plants in 2005 (St Henri site). Most hybrids had the HR trait, reduced male fertility, intermediate genome structure, and presence of both species-specific amplified fragment length polymorphism markers. Both F(1) and backcross hybrid generations were detected. One introgressed individual, i.e. with the HR trait and diploid ploidy level of B. rapa, was observed in 2005. The latter had reduced pollen viability but produced approximately 480 seeds. Forty-eight of the 50 progeny grown from this plant were diploid with high pollen viability and 22 had the transgene (1:1 segregation). These observations confirm the persistence of the HR trait over time. Persistence occurred over a 6-year period, in the absence of herbicide selection pressure (with the exception of possible exposure to glyphosate in 2002), and in spite of the fitness cost associated with hybridization.
Collapse
Affiliation(s)
- S I Warwick
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseeds Research Center, Central Experimental Farm, Ottawa, ON, Canada K1A OC6.
| | | | | | | |
Collapse
|