1
|
Bertrand Q, Nogly P, Nango E, Kekilli D, Khusainov G, Furrer A, James D, Dworkowski F, Skopintsev P, Mous S, Martiel I, Börjesson P, Ortolani G, Huang CY, Kepa M, Ozerov D, Brünle S, Panneels V, Tanaka T, Tanaka R, Tono K, Owada S, Johnson PJM, Nass K, Knopp G, Cirelli C, Milne C, Schertler G, Iwata S, Neutze R, Weinert T, Standfuss J. Structural effects of high laser power densities on an early bacteriorhodopsin photocycle intermediate. Nat Commun 2024; 15:10278. [PMID: 39604356 PMCID: PMC11603225 DOI: 10.1038/s41467-024-54422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Time-resolved serial crystallography at X-ray Free Electron Lasers offers the opportunity to observe ultrafast photochemical reactions at the atomic level. The technique has yielded exciting molecular insights into various biological processes including light sensing and photochemical energy conversion. However, to achieve sufficient levels of activation within an optically dense crystal, high laser power densities are often used, which has led to an ongoing debate to which extent photodamage may compromise interpretation of the results. Here we compare time-resolved serial crystallographic data of the bacteriorhodopsin K-intermediate collected at laser power densities ranging from 0.04 to 2493 GW/cm2 and follow energy dissipation of the absorbed photons logarithmically from picoseconds to milliseconds. Although the effects of high laser power densities on the overall structure are small, in the upper excitation range we observe significant changes in retinal conformation and increased heating of the functionally critical counterion cluster. We compare light-activation within crystals to that in solution and discuss the impact of the observed changes on bacteriorhodopsin biology.
Collapse
Affiliation(s)
- Quentin Bertrand
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Przemyslaw Nogly
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, Poland
| | - Eriko Nango
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
| | - Demet Kekilli
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Georgii Khusainov
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Daniel James
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | | | - Petr Skopintsev
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Sandra Mous
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Isabelle Martiel
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg, Sweden
| | - Chia-Ying Huang
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Michal Kepa
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Dmitry Ozerov
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Valerie Panneels
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Tomoyuki Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Rie Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Shigeki Owada
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, Japan
| | | | - Karol Nass
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Gregor Knopp
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Claudio Cirelli
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Christopher Milne
- Photon Science Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Gebhard Schertler
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, Japan
- Japan Science and Technology Agency (JST)-Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Gothenburg, Sweden
| | - Tobias Weinert
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland.
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland.
| |
Collapse
|
2
|
Nass Kovacs G, Colletier JP, Grünbein ML, Yang Y, Stensitzki T, Batyuk A, Carbajo S, Doak RB, Ehrenberg D, Foucar L, Gasper R, Gorel A, Hilpert M, Kloos M, Koglin JE, Reinstein J, Roome CM, Schlesinger R, Seaberg M, Shoeman RL, Stricker M, Boutet S, Haacke S, Heberle J, Heyne K, Domratcheva T, Barends TRM, Schlichting I. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat Commun 2019; 10:3177. [PMID: 31320619 PMCID: PMC6639342 DOI: 10.1038/s41467-019-10758-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2019] [Indexed: 11/10/2022] Open
Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump. The primary photochemical event upon light absorption is isomerization of the retinal chromophore. Here we used time-resolved crystallography at an X-ray free-electron laser to follow the structural changes in multiphoton-excited bR from 250 femtoseconds to 10 picoseconds. Quantum chemistry and ultrafast spectroscopy were used to identify a sequential two-photon absorption process, leading to excitation of a tryptophan residue flanking the retinal chromophore, as a first manifestation of multiphoton effects. We resolve distinct stages in the structural dynamics of the all-trans retinal in photoexcited bR to a highly twisted 13-cis conformation. Other active site sub-picosecond rearrangements include correlated vibrational motions of the electronically excited retinal chromophore, the surrounding amino acids and water molecules as well as their hydrogen bonding network. These results show that this extended photo-active network forms an electronically and vibrationally coupled system in bR, and most likely in all retinal proteins. Bacteriorhodopsin (bR) is a light-driven proton pump. Here the authors combine time-resolved crystallography at a free-electron laser, ultrafast spectroscopy and quantum chemistry to study the structural changes following multiphoton photoexcitation of bR and find that they occur within 300 fs not only in the light-absorbing chromophore but also in the surrounding protein.
Collapse
Affiliation(s)
- Gabriela Nass Kovacs
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Jacques-Philippe Colletier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Marie Luise Grünbein
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Yang Yang
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Till Stensitzki
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Alexander Batyuk
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - David Ehrenberg
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Raphael Gasper
- Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Alexander Gorel
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Marco Kloos
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jochen Reinstein
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Miriam Stricker
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Stefan Haacke
- Université de Strasbourg-CNRS, UMR 7504, IPCMS, 23 Rue du Loess, 67034, Strasbourg, France
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Karsten Heyne
- Freie Universität Berlin, Department of Physics, Arnimallee 14, 14195, Berlin, Germany
| | - Tatiana Domratcheva
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| | - Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|