1
|
Abstract
The primary mission of the Versatile Test Reactor (VTR) is to provide peak fast flux in excess of 4.0 x 1015n/cm2-s to support fuel and material testing. To achieve a high fast flux, it is beneficial to maximize the flux peaking in the center of the core. With a single enrichment zone, a highly peaked flux distribution produces a highly peaked power distribution. Coolant inlet orifices can be designed to handle the peaked power distribution but orifice design can be simplified if a more even radial power distribution can be achieved. An approach to reduce the power peaking factor is to use enrichment zoning, which would improve coolant flow homogeneity. Several alternative VTR core configurations are considered with two enrichment zones (15 wt% Pu and 20 wt% Pu). These alternative configurations require more assemblies to maintain reactivity than the reference VTR core, which leads to failure to achieve the design criterion for experimental fast flux with the target core power. Configurations using 20 wt% Pu with different fuel assembly designs having smaller and larger fuel volume fractions are also analyzed. The case having a larger fuel volume fraction reduces the number of fuel assemblies required for criticality, which keeps the experimental flux higher. Configurations with volume fraction zoning can slightly decrease the peaking factor while maintaining the desired fast flux, although some thermal hydraulic limits may not be satisfied. Volume fraction zoning configurations may offer benefits, but determining the feasibility of these configurations requires further thermal hydraulic design and analysis work beyond the scope of the present work.
Collapse
|