1
|
Li Z, Liu X, Wang C, Li Z, Jiang B, Zhang R, Tong L, Qu Y, He S, Chen H, Mao Y, Li Q, Pook T, Wu Y, Zan Y, Zhang H, Li L, Wen K, Chen Y. The pig pangenome provides insights into the roles of coding structural variations in genetic diversity and adaptation. Genome Res 2023; 33:1833-1847. [PMID: 37914227 PMCID: PMC10691484 DOI: 10.1101/gr.277638.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/12/2023] [Indexed: 11/03/2023]
Abstract
Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.
Collapse
Affiliation(s)
- Zhengcao Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China;
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Chen Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhenyang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Bo Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Ruifeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Lu Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Youping Qu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Haifan Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yafei Mao
- Bio-X Institutes, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Qingnan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Torsten Pook
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen 6700 AH, The Netherlands
| | - Yu Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yanjun Zan
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Lu Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Keying Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 510006 Guangzhou, China;
| |
Collapse
|
2
|
Liu C, Li P, Zhou W, Ma X, Wang X, Xu Y, Jiang N, Zhao M, Zhou T, Yin Y, Ren J, Huang R. Genome Data Uncover Conservation Status, Historical Relatedness and Candidate Genes Under Selection in Chinese Indigenous Pigs in the Taihu Lake Region. Front Genet 2020; 11:591. [PMID: 32582299 PMCID: PMC7296076 DOI: 10.3389/fgene.2020.00591] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Chinese indigenous pig breeds in the Taihu Lake (TL) region of Eastern China are well documented by their exceptional prolificacy. There are seven breeds in this region including Meishan (MS), Erhualian (EHL), Jiaxing Black (JXB), Fengjing (FJ), Shawutou (SWT), Mi (MI), and Hongdenglong (HDL). At present, these breeds are facing a great threat of population decline, inbreeding depression and lineage admixture since Western commercial pigs have dominated in Chinese pig industry. To provide better conservation strategies and identify candidate genes under selection for these breeds, we explored genome-wide single nucleotide polymorphism (SNP) markers to uncover genetic variability and relatedness, population structure, historical admixture and genomic signature of selection of 440 pigs representing the most comprehensive lineages of these breeds in TL region in a context of 1228 pigs from 45 Eurasian breeds. We showed that these breeds were more closely related to each other as compared to other Eurasian breeds, defining one of the main ancestral lineages of Chinese indigenous pigs. These breeds can be divided into two subgroups, one including JXB and FJ, and the other comprising of EHL, MI, HDL, MS, and SWT. In addition, HDL was highly inbred whereas EHL and MS had more abundant genetic diversity owing to their multiple conservation populations. Moreover, we identified a list of candidate genes under selection for body size and prolificacy. Our results would benefit the conservation of these valuable breeds and improve our understanding of the genetic mechanisms of body size and fecundity in pigs.
Collapse
Affiliation(s)
- Chenxi Liu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Xiang Ma
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaopeng Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yan Xu
- Jiangsu Provincial Station of Animal Husbandry, Nanjing, China
| | - Nengjing Jiang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Moran Zhao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Tianwei Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Yanzhen Yin
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| |
Collapse
|
3
|
Pan D, Liu T, Lei T, Zhu H, Wang Y, Deng S. Progress in multiple genetically modified minipigs for xenotransplantation in China. Xenotransplantation 2019; 26:e12492. [PMID: 30775816 DOI: 10.1111/xen.12492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Abstract
Pig-to-human organ transplantation provides an alternative for critical shortage of human organs worldwide. Genetically modified pigs are promising donors for xenotransplantation as they show many anatomical and physiological similarities to humans. However, immunological rejection including hyperacute rejection (HAR), acute humoral xenograft rejection (AHXR), immune cell-mediated rejection, and other barriers associated with xenotransplantation must be overcome with various strategies for the genetic modification of pigs. In this review, we summarize the outcomes of genetically modified and cloned pigs achieved by Chinese scientists to resolve the above-mentioned problems in xenotransplantation. It is now possible to knockout several porcine genes associated with the expression of sugar residues, antigens for (naturally) existing antibodies in humans, including GGTA1, CMAH, and β4GalNT2, and thereby preventing the antigen-antibody response. Moreover, insertion of human complement- and coagulation-regulatory transgenes, such as CD46, CD55, CD59, and hTBM, can further overcome effects of the humoral immune response and coagulation dysfunction, while expression of regulatory factors of immune responses can inhibit the adaptive immune rejection. Furthermore, transgenic strategies have been developed by Chinese scientists to reduce the potential risk of infections by endogenous porcine retroviruses (PERVs). Breeding of multi-gene low-immunogenicity pigs in China is also presented in this review. Lastly, we will briefly mention the preclinical studies on pig-to-non-human primate xenotransplantation conducted in several centers in China.
Collapse
Affiliation(s)
- Dengke Pan
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Ting Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huibin Zhu
- Chengdu Clonorgan Biotechnology Co., LTD, Chengdu, China
| | - Yi Wang
- Health Management Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Shaoping Deng
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Ribani A, Utzeri VJ, Geraci C, Tinarelli S, Djan M, Veličković N, Doneva R, Dall'Olio S, Nanni Costa L, Schiavo G, Bovo S, Usai G, Gallo M, Radović Č, Savić R, Karolyi D, Salajpal K, Gvozdanović K, Djurkin-Kušec I, Škrlep M, Čandek-Potokar M, Ovilo C, Fontanesi L. Signatures of de-domestication in autochthonous pig breeds and of domestication in wild boar populations from MC1R and NR6A1 allele distribution. Anim Genet 2019; 50:166-171. [PMID: 30741434 DOI: 10.1111/age.12771] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2018] [Indexed: 01/14/2023]
Abstract
Autochthonous pig breeds are usually reared in extensive or semi-extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor (MC1R) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 (NR6A1) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south-eastern European countries (Krškopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro-geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild-type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of 'de-domestication' process, and wild resources are challenged by a 'domestication' drift. Both need to be further investigated and managed.
Collapse
Affiliation(s)
- A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - V J Utzeri
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - C Geraci
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - S Tinarelli
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy.,Associazione Nazionale Allevatori Suini, via Nizza 53, 00198, Roma, Italy
| | - M Djan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - N Veličković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000, Novi Sad, Serbia
| | - R Doneva
- Association for Breeding and Preserving of the East Balkan Swine, 3 Simeon Veliki Blvd., Shumen, 9700, Bulgaria
| | - S Dall'Olio
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - L Nanni Costa
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - G Usai
- Servizio Ricerca per la Zootecnia, Agris Sardegna, Loc. Bonassai SS 291 km 18,600, 07100, Sassari, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini, via Nizza 53, 00198, Roma, Italy
| | - Č Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, 11080, Belgrade-Zemun, Serbia
| | - R Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade-Zemun, Serbia
| | - D Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000, Zagreb, Croatia
| | - K Salajpal
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000, Zagreb, Croatia
| | - K Gvozdanović
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - I Djurkin-Kušec
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - M Škrlep
- Kmetijski inštitut Slovenije, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
| | - M Čandek-Potokar
- Kmetijski inštitut Slovenije, Hacquetova ulica 17, 1000, Ljubljana, Slovenia
| | - C Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, 28040, Madrid, Spain
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| |
Collapse
|
5
|
Wang K, Tang X, Xie Z, Zou X, Li M, Yuan H, Guo N, Ouyang H, Jiao H, Pang D. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 2017; 26:799-805. [PMID: 28993973 DOI: 10.1007/s11248-017-0044-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
CRISPR/Cas9 has emerged as one of the most popular genome editing tools due to its simple design and high efficiency in multiple species. Myostatin (MSTN) negatively regulates skeletal muscle growth and mutations in myostatin cause double-muscled phenotype in various animals. Here, we generated myostatin mutation in Erhualian pigs using a combination of CRISPR/Cas9 and somatic cell nuclear transfer. The protein level of myostatin precursor decreased dramatically in mutant cloned piglets. Unlike myostatin knockout Landrace, which often encountered health issues and died shortly after birth, Erhualian pigs harboring homozygous mutations were viable. Moreover, myostatin knockout Erhualian pigs exhibited partial double-muscled phenotype such as prominent muscular protrusion, wider back and hip compared with wild-type piglets. Genome editing in Chinese indigenous pig breeds thus holds great promise not only for improving growth performance, but also for protecting endangered genetic resources.
Collapse
Affiliation(s)
- Kankan Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China
| | - Zicong Xie
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China
| | - Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China
| | - Mengjing Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China
| | - Hongming Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China
| | - Nannan Guo
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China
| | - Huping Jiao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China.
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Lvyuan District, Changchun, 130062, Jilin Province, People's Republic of China.
| |
Collapse
|
6
|
Genome-wide genetic structure and differentially selected regions among Landrace, Erhualian, and Meishan pigs using specific-locus amplified fragment sequencing. Sci Rep 2017; 7:10063. [PMID: 28855565 PMCID: PMC5577042 DOI: 10.1038/s41598-017-09969-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 08/02/2017] [Indexed: 12/22/2022] Open
Abstract
As typical Chinese indigenous pig breeds, Erhualian and Meishan have been widely used to produce new strain or breed in the world. However, the genetic basis of characteristics of these pig breeds is still limited. Moreover, considering cost and output of sequencing, it is necessary to further develop cost-effective method for pig genome screening. To contribute on this issue, we developed a SLAF-seq (specific-locus amplified fragment sequencing) method for pigs and applied it to analyze the genetic difference among Landrace, Erhualian, and Meishan pigs. A total of 453.75 million reads were produced by SLAF-seq. After quality-control, 165,670 SNPs (single nucleotide polymorphisms) were used in further analysis. The results showed that Landrace had distinct genetic relationship compared to Erhualian (FST = 0.5480) and Meishan (FST = 0.5800), respectively, while Erhualian and Meishan held the relatively close genetic relationship (FST = 0.2335). Furthermore, a genome-wide scanning revealed 268 differentially selected regions (DSRs) with 855 genes and 256 DSRs with 347 genes between Landrace and the two Chinese indigenous pig breeds and between Erhualian and Meishan, respectively. This study provides a new cost-effective method for pig genome study and might contribute to a better understanding on the formation mechanism of genetic difference among pigs with different geographical origins.
Collapse
|
7
|
Vrtková I, Vrtek Š, Falková L. Efficiency of Tetrameric Short Tandem Repeats in Prestice Black-Pied Pig for Traceability and Parentity Testing. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2016. [DOI: 10.11118/actaun201664020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Abstract
Abstract. The Prestice Black-Pied pig (PC) is a genetic resource of the Czech Republic. Information about boar variability has been provided in preceding papers. The objective of this work was to compare genetic variability of boars and sows. A total of 21 microsatellite markers were used to study genetic diversity and population structure of 149 PC breeding animals. In this paper, current parameters of assessments of diversity in PC are listed. All loci were polymorphic, and a total of 167 alleles were observed across the studied loci. The range of alleles was found to be 4 to 15 with a mean of 7.95. Overall allele frequency ranged from 0.07 to 0.25. The calculated observed and expected heterozygosity values were 0.70 and 0.73, respectively. The polymorphism information content (PIC) was 0.69 and the overall within-population inbreeding estimate (FIS) was 0.04. Genetic differentiation and population subdivision were tested. The level of admixture of breeds used for improvement of the PC breed was evaluated (Landrace, Large White and Pietrain). Five percent of analysed PC breeding boars had more than 20% admixture of other monitored breeds. The obtained results are important for the future sustainability of this local breed.
Collapse
|
9
|
Bosse M, Madsen O, Megens HJ, Frantz LAF, Paudel Y, Crooijmans RPMA, Groenen MAM. Hybrid origin of European commercial pigs examined by an in-depth haplotype analysis on chromosome 1. Front Genet 2015; 5:442. [PMID: 25601878 PMCID: PMC4283659 DOI: 10.3389/fgene.2014.00442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/03/2014] [Indexed: 11/22/2022] Open
Abstract
Although all farm animals have an original source of domestication, a large variety of modern breeds exist that are phenotypically highly distinct from the ancestral wild population. This phenomenon can be the result of artificial selection or gene flow from other sources into the domesticated population. The Eurasian wild boar (Sus scrofa) has been domesticated at least twice in two geographically distinct regions during the Neolithic revolution when hunting shifted to farming. Prior to the establishment of the commercial European pig breeds we know today, some 200 years ago Chinese pigs were imported into Europe to improve local European pigs. Commercial European domesticated pigs are genetically more diverse than European wild boars, although historically the latter represents the source population for domestication. In this study we examine the cause of the higher diversity within the genomes of European commercial pigs compared to their wild ancestors by testing two different hypotheses. In the first hypothesis we consider that European commercial pigs are a mix of different European wild populations as a result of movement throughout Europe, hereby acquiring haplotypes from all over the European continent. As an alternative hypothesis, we examine whether the introgression of Asian haplotypes into European breeds during the Industrial Revolution caused the observed increase in diversity. By using re-sequence data for chromosome 1 of 136 pigs and wild boars, we show that an Asian introgression of about 20% into the genome of European commercial pigs explains the majority of the increase in genetic diversity. These findings confirm that the Asian hybridization, that was used to improve production traits of local breeds, left its signature in the genome of the commercial pigs we know today.
Collapse
Affiliation(s)
- Mirte Bosse
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - Laurent A F Frantz
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - Yogesh Paudel
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | | | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| |
Collapse
|
10
|
Ramírez O, Ojeda A, Tomàs A, Gallardo D, Huang LS, Folch JM, Clop A, Sánchez A, Badaoui B, Hanotte O, Galman-Omitogun O, Makuza SM, Soto H, Cadillo J, Kelly L, Cho IC, Yeghoyan S, Pérez-Enciso M, Amills M. Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig breeds. Mol Biol Evol 2009; 26:2061-72. [PMID: 19535739 DOI: 10.1093/molbev/msp118] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the origin of swine breeds through the joint analysis of mitochondrial, microsatellite, and Y-chromosome polymorphisms in a sample of pigs and wild boars with a worldwide distribution. Genetic differentiation between pigs and wild boars was remarkably weak, likely as a consequence of a sustained gene flow between both populations. The analysis of nuclear markers evidenced the existence of a close genetic relationship between Near Eastern and European wild boars making it difficult to infer their relative contributions to the gene pool of modern European breeds. Moreover, we have shown that European and Far Eastern pig populations have contributed maternal and paternal lineages to the foundation of African and South American breeds. Although West African pigs from Nigeria and Benin exclusively harbored European alleles, Far Eastern and European genetic signatures of similar intensity were detected in swine breeds from Eastern Africa. This region seems to have been a major point of entry of livestock species in the African continent as a result of the Indian Ocean trade. Finally, South American creole breeds had essentially a European ancestry although Asian Y-chromosome and mitochondrial haplotypes were found in a few Nicaraguan pigs. The existence of Spanish and Portuguese commercial routes linking Asia with America might have favored the introduction of Far Eastern breeds into this continent.
Collapse
Affiliation(s)
- O Ramírez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|