1
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
2
|
Raucci F, Saviano A, Casillo GM, Guerra-Rodriguez M, Mansour AA, Piccolo M, Ferraro MG, Panza E, Vellecco V, Irace C, Caso F, Scarpa R, Mascolo N, Alfaifi M, Iqbal AJ, Maione F. IL-17-induced inflammation modulates the mPGES-1/PPAR-γ pathway in monocytes/macrophages. Br J Pharmacol 2021; 179:1857-1873. [PMID: 33595097 DOI: 10.1111/bph.15413] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Recent biochemical and pharmacological studies have reported that in several tissues and cell types, microsomal PGE2 synthase (mPGES) and PPAR-γ expression are modulated by a variety of inflammatory factors and stimuli. Considering that very little is known about the biological effects promoted by IL-17 in the context of mPGES-1/PPAR-γ modulation, we sought to investigate the contribution of this unique cytokine on this integrated pathway during the onset of inflammation. EXPERIMENTAL APPROACH We evaluated effects of PF 9184 (mPGES-1 inhibitor) and troglitazone (PPAR-γ agonist) in vitro, using the mouse macrophage cell line J774A.1. In vivo, the dorsal air pouch model in CD1 mice was used, and inflammatory infiltrates were analysed by flow cytometry. Locally produced cyto-chemokines and PGs were assessed using elisa assays. Western blots were also employed to determine the activity of various enzymes involved in downstream signalling pathways. KEY RESULTS PF 9184 and troglitazone, in a time- and dose-dependent manner, modulated leukocyte infiltration, myeloperoxidase activity, and the expression of COX-2/mPGES-1, NF-кB/IкB-α, and mPTGDS-1/PPAR-γ, induced by IL-17. Moreover, both PF 9184 and troglitazone modulated PG (PGE2 , PGD2 , and PGJ2 ) production, the expression of different pro-inflammatory cyto-chemokines, and the recruitment of inflammatory monocytes, in response to IL-17. CONCLUSIONS AND IMPLICATIONS Our data suggest that IL-17 may constitute a specific modulator of inflammatory monocytes during later phases of the inflammatory response. The results of this study show, for the first time, that the IL-17/mPGES-1/PPAR-γ pathway could represent a potential therapeutic target for inflammatory-based and immune-mediated diseases.
Collapse
Affiliation(s)
- Federica Raucci
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Anella Saviano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gian Marco Casillo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Miguel Guerra-Rodriguez
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Raffaele Scarpa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Nicola Mascolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Asif Jilani Iqbal
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Francesco Maione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
The Differences in the Proteome Profile of Cannabidiol-Treated Skin Fibroblasts following UVA or UVB Irradiation in 2D and 3D Cell Cultures. Cells 2019; 8:cells8090995. [PMID: 31466340 PMCID: PMC6770406 DOI: 10.3390/cells8090995] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD), as the only phytocannabinoid that has no psychoactive effect, has both antioxidant and anti-inflammatory effects, and thus might be suggested as a cytoprotective compound against UV-induced metabolic changes in skin cells. Therefore, the aim of this study was to investigate the level of protective CBD activity by evaluating the proteomic profile of 2D and 3D cultured skin fibroblasts models following exposure to UVA and UVB radiation. The CBD cytoprotective effect against UV-induced damage in 2D and 3D cultured fibroblasts were different. The main alterations focus on the range of cell reaction and involved different proteins associated with various molecular functions. In the 2D cultured cells, following UV radiation, the major changes were associated with proteins involved in antioxidant response and inflammation, while, in the 3D cultured fibroblasts, CBD action against UV induced changes were mainly associated with the activation of signalling pathways. Therefore, the knowledge of the CBD action in a multilayer skin cells model allowed for the prediction of changes in cell-cell interactions and skin cell metabolism. Knowledge about the lower protective effect of CBD in 3D cultured fibroblasts should be taken into account during the design of UV light protection.
Collapse
|
4
|
Bastiaansen-Jenniskens Y, Siawash M, van de Lest C, Verhaar J, Kloppenburg M, Zuurmond AM, Stojanovic-Susulic V, Van Osch G, Clockaerts S. Monounsaturated and Saturated, but Not n-6 Polyunsaturated Fatty Acids Decrease Cartilage Destruction under Inflammatory Conditions: A Preliminary Study. Cartilage 2013; 4:321-8. [PMID: 26069676 PMCID: PMC4297154 DOI: 10.1177/1947603513494401] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Osteoarthritis (OA) is associated with obesity in which altered fatty acid levels have been observed. We investigated whether the most common fatty acids in synovial fluid influence cartilage deterioration in OA. DESIGN Cartilage was obtained from OA patients undergoing total knee arthroplasty. Chondrocytes or cartilage explants were cultured with linoleic (n-6 polyunsaturated), oleic (monounsaturated), or palmitic (saturated) acid. After preculture, media were renewed and inflammation was simulated in half of the samples by addition of 10 ng/mL tumor necrosis factor-α (TNFα) with or without the fatty acids. Effects on lipid uptake (Oil-Red-O), cell toxicity (lactate dehydrogenase), prostaglandin-E2 (PGE2) release and gene expression for prostaglandin-endoperoxide synthase-2 (PTGS2), matrix metalloproteinase-1 (MMP1), and MMP13, and a disintegrin and metalloproteinase with thrombospondin motifs 4 were determined on chondrocytes in monolayer. Effects on glycosaminoglycan (GAG) release were evaluated on cartilage explants. RESULTS None of the fatty acids were cytotoxic and all were taken up by the cells, resulting in a higher amount of intracellular lipid in chondrocytes. Linoleic acid increased PGE2 production in the presence of TNFα. Oleic acid and palmitic acid inhibited MMP1 gene expression in chondrocytes stimulated with TNFα. In cartilage explants, GAG release was also inhibited by oleic acid and palmitic acid, and oleic acid decreased PTGS2 gene expression in stimulated chondrocytes. CONCLUSIONS Linoleic acid has a pro-inflammatory effect on cartilage whereas oleic acid and palmitic acid seem to inhibit cartilage destruction. These results indicate that altered fatty acid levels may influence loss of cartilage structure in OA.
Collapse
Affiliation(s)
| | - M. Siawash
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - J.A.N. Verhaar
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M. Kloppenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - G.J.V.M. Van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Ersamus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - S. Clockaerts
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Orthopaedic Surgery and Traumatology, University Hospital of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Duan Y, Brenig B, Wu X, Ren J, Huang L. The G32E functional variant reduces activity of PPARD by nuclear export and post-translational modification in pigs. PLoS One 2013; 8:e75925. [PMID: 24058710 PMCID: PMC3776753 DOI: 10.1371/journal.pone.0075925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/22/2013] [Indexed: 01/25/2023] Open
Abstract
Peroxisome proliferator-activated receptor beta/delta (PPARD) is a crucial and multifaceted determinant of diverse biological functions including lipid metabolism, embryonic development, inflammatory response, wound healing and cancer. Recently, we proposed a novel function of porcine PPARD (sPPARD) in external ear development. A missense mutation (G32E) in an evolutionary conservative domain of sPPARD remarkably increases external ear size in pigs. Here, we investigated the underlying molecular mechanism of the causal mutation at the cellular level. Using a luciferase reporter system, we showed that the G32E substitution reduced transcription activity of sPPARD in a ligand-dependent manner. By comparison of the subcellular localization of wild-type and mutated sPPARD in both PK-15 cells and pinna cartilage-derived primary chondrocytes, we found that the G32E substitution promoted CRM-1 mediated nuclear exportation of sPPARD. With the surface plasmon resonance technology, we further revealed that the G32E substitution had negligible effect on its ligand binding affinity. Finally, we used co-immunoprecipitation and luciferase reporter assays to show that the G32E substitution greatly reduced ubiquitination level by blocking ubiquitination of the crucial A/B domain and consequently decreased transcription activity of sPPARD. Taken together, our findings strongly support that G32E is a functional variant that plays a key role in biological activity of sPPARD, which advances our understanding of the underlying mechanism of sPPARD G32E for ear size in pigs.
Collapse
Affiliation(s)
- Yanyu Duan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- Institute of Veterinary Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Xiaohui Wu
- Institute of Developmental Biology & Molecular Medicine, Fudan University, Shanghai, China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (JR); (LH)
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail: (JR); (LH)
| |
Collapse
|
6
|
Abstract
Metabolic osteoarthritis (OA) has now been characterized as a subtype of OA, and links have been discovered between this phenotype and metabolic syndrome (MetS)--both with individual MetS components and with MetS as a whole. Hypertension associates with OA through subchondral ischaemia, which can compromise nutrient exchange into articular cartilage and trigger bone remodelling. Ectopic lipid deposition in chondrocytes induced by dyslipidemia might initiate OA development, exacerbated by deregulated cellular lipid metabolism in joint tissues. Hyperglycaemia and OA interact at both local and systemic levels; local effects of oxidative stress and advanced glycation end-products are implicated in cartilage damage, whereas low-grade systemic inflammation results from glucose accumulation and contributes to a toxic internal environment that can exacerbate OA. Obesity-related metabolic factors, particularly altered levels of adipokines, contribute to OA development by inducing the expression of proinflammatory factors as well as degradative enzymes, leading to the inhibition of cartilage matrix synthesis and stimulation of subchondral bone remodelling. In this Review, we summarize the shared mechanisms of inflammation, oxidative stress, common metabolites and endothelial dysfunction that characterize the aetiologies of OA and MetS, and nominate metabolic OA as the fifth component of MetS. We also describe therapeutic opportunities that might arise from uniting these concepts.
Collapse
Affiliation(s)
- Qi Zhuo
- Department of Orthopaedics, Chinese PLA General Hospital, Fuxing Road 28#, Haidian District, Beijing 100853, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Activation of PPARs α, β/δ, and γ Impairs TGF-β1-Induced Collagens' Production and Modulates the TIMP-1/MMPs Balance in Three-Dimensional Cultured Chondrocytes. PPAR Res 2010; 2010:635912. [PMID: 20981144 PMCID: PMC2957135 DOI: 10.1155/2010/635912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 07/13/2010] [Accepted: 07/30/2010] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose. We investigated the potency of Peroxisome Proliferators-Activated Receptors (PPARs) α, β/δ, and γ agonists to modulate Transforming Growth Factor-β1 (TGF-β1-) induced collagen production or changes in Tissue Inhibitor of Matrix Metalloproteinase- (TIMP-) 1/Matrix Metalloproteinase (MMP) balance in rat chondrocytes embedded in alginate beads. Experimental Approach. Collagen production was evaluated by quantitative Sirius red staining, while TIMP-1 protein levels and global MMP (-1, -2, -3, -7, and -9) or specific MMP-13 activities were measured by ELISA and fluorigenic assays in culture media, respectively. Levels of mRNA for type II collagen, TIMP-1, and MMP-3 & 13 were quantified by real-time PCR. Key Results. TGF-β1 increased collagen deposition and type II collagen mRNA levels, while inducing TIMP-1 mRNA and protein expression. In contrast, it decreased global MMP or specific MMP-13 activities, while decreasing MMP-3 or MMP-13 mRNA levels. PPAR agonists reduced most of the effects of TGF-β1 on changes in collagen metabolism and TIMP-1/MMP balance in rat in a PPAR-dependent manner, excepted for Wy14643 on MMP activities. Conclusions and Implications. PPAR agonists reduce TGF-β1-modulated ECM turnover and inhibit chondrocyte activities crucial for collagen biosynthesis, and display a different inhibitory profile depending on selectivity for PPAR isotypes.
Collapse
|
8
|
Yan D, Davis FJ, Sharrocks AD, Im HJ. Emerging roles of SUMO modification in arthritis. Gene 2010; 466:1-15. [PMID: 20627123 DOI: 10.1016/j.gene.2010.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/07/2010] [Indexed: 12/31/2022]
Abstract
Dynamic modification involving small ubiquitin-like modifier (SUMO) has emerged as a new mechanism of protein regulation in mammalian biology. Sumoylation is an ATP-dependent, reversible post-translational modification which occurs under both basal and stressful cellular conditions. Sumoylation profoundly influences protein functions and pertinent biological processes. For example, sumoylation modulates multiple components in the NFkappaB pathway and exerts an anti-inflammatory effect. Likewise, sumoylation of peroxisome proliferator-activated receptor gamma (PPARgamma) augments its anti-inflammatory activity. Current evidence suggests a role of sumoylation for resistance to apoptosis in synovial fibroblasts. Dynamic SUMO regulation controls the biological outcomes initiated by various growth factors involved in cartilage homeostasis, including basic fibroblast growth factors (bFGF or FGF-2), transforming growth factor-beta (TGF-beta) and insulin-like growth factor-1 (IGF-1). The impact of these growth factors on cartilage are through sumoylation-dependent control of the transcription factors (e.g., Smad, Elk-1, HIF-1) that are key regulators of matrix components (e.g., aggrecan, collagen) or cartilage-degrading enzymes (e.g., MMPs, aggrecanases). Thus, SUMO modification appears to profoundly affect chondrocyte and synovial fibroblast biology, including cell survival, inflammatory responses, matrix metabolism and hypoxic responses. More recently, evidence suggests that, in addition to their nuclear roles, the SUMO pathways play crucial roles in mitochondrial activity, cellular senescence, and autophagy. With an increasing number of reports linking SUMO to human diseases like arthritis, it is probable that novel and equally important functions of the sumoylation pathway will be elucidated in the near future.
Collapse
Affiliation(s)
- Dongyao Yan
- Department of Biochemistry, Rush University Medical Center, USA
| | | | | | | |
Collapse
|