St-Arnaud R, Arabian A, Yu VWC, Akhouayri O, Knutson JC, Strugnell SA. 1α,24(S)(OH)2D2 normalizes bone morphology and serum parathyroid hormone without hypercalcemia in 25-hydroxyvitamin D-1-hydroxylase (CYP27B1)-deficient mice, an animal model of vitamin D deficiency with secondary hyperparathyroidism.
J Endocrinol Invest 2008;
31:711-7. [PMID:
18852532 DOI:
10.1007/bf03346420]
[Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND
Vitamin D compounds are effective in managing elevated PTH levels in secondary hyperparathyroidism (SHPT) of renal failure. However, undesired increases in serum calcium and phosphorus associated with compounds such as calcitriol [1,25(OH)2D3] has prompted a search for compounds with improved safety profiles. 1alpha,24(S)(OH)2D2 (1,24(OH)2D2) is a vitamin D2 metabolite with low calcium-mo bilizing activity in vivo. We studied the efficacy of 1,24(OH)2D2 in mice lacking the CYP27B1 enzyme [25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-OHase)], a novel vitamin D deficiency model with SHPT.
MATERIALS AND METHODS
1alpha-OHase-deficient (-/-) mice and normal (+/-) heterozygous littermates re ceived 1,24(OH)2D2 (100, 300, 1000, and 3000 pg/g/day) or 1,25(OH)2D3 (30, 300, and 500 pg/g/day) for 5 weeks via daily sc injection. Control groups received vehicle.
RESULTS
Vehicle-treated 1alpha-OHase-deficient mice were hypocalcemic and had greatly elevated serum PTH. 1,24(OH)2D2 at doses above 300 pg/g/day normalized serum calcium, serum PTH, bone growth plate morphology, and other bone parameters. No hy percalcemia was observed at any dose of 1,24(OH)2D2 in normal or 1alpha-OHase-deficient animals. In contrast, 1,25(OH)2D3 at only 30 pg/g/day normalized calcemia, serum PTH, and bone parameters, but at higher doses completely suppressed PTH and caused hypercalcemia in both 1alpha-OHase-deficient and normal mice. Treatment with 500 pg/g/day of 1,25(OH)2D3 also induced osteomalacia in normal animals.
CONCLUSION
1,25(OH)2D3 was maximally active at 10-fold lower doses than 1,24(OH)2D2, but induced hypercalcemia and osteomalacia at high doses. 1,24(OH)2D2 normalized serum calcium, serum PTH, and bone histomorphometry without hypercalcemia in 1alpha-OHase-deficient mice with SHPT.
Collapse