Claude-Henri C, Binot C, Sadoc JF. The involvement of liquid crystals in multichannel implanted neurostimulators, hearing and ENT infections, and cancer.
Acta Otolaryngol 2019;
139:316-332. [PMID:
31035839 DOI:
10.1080/00016489.2018.1554265]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Liquid crystals (LCs) consist of assemblies of molecules, between one and tens of nanometers, grouped in identifiable cohorts according to orientation and structure, which is often lamellar with varying chirality. The term liquid phase (Lo phase) designates certain such mesophases. This variety in geometry corresponds to a variety of functions. Some molecules, both organic and inorganic, used in applied engineering, and association with LCs confer new properties. Applying these aspects of LCs in manufacturing implantable material is a growing technology, especially in the interfaces of differentiated multichannel electro-neurostimulation. We highlight the involvement of LCs in the head and neck region, and the role mesophases play in outer hair cell electromotility (mechanotransduction). We summarize implications of LCs this for multichannel electroneurostimulation implant engineering, and highlight their role importance of LCs in early oncogenic process, HPV, and latency in (Epstein-Barr) and other pathogens. Our approach should help give rise to new therapeutic perspectives. Focusing on upstream nanometric phenomena needs to take on board classic determinism, quantum probability, and statistical complexity.
Collapse