1
|
Thalmensi J, Pliquet E, Liard C, Chamel G, Kreuz C, Bestetti T, Escande M, Kostrzak A, Pailhes-Jimenez AS, Bourges E, Julithe M, Bourre L, Keravel O, Clayette P, Huet T, Wain-Hobson S, Langlade-Demoyen P. A DNA telomerase vaccine for canine cancer immunotherapy. Oncotarget 2019; 10:3361-3372. [PMID: 31164958 PMCID: PMC6534364 DOI: 10.18632/oncotarget.26927] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is highly expressed in more than 90% of canine cancer cells and low to absent in normal cells. Given that immune tolerance to telomerase is easily broken both naturally and experimentally, telomerase is an attractive tumor associated antigen for cancer immunotherapy. Indeed, therapeutic trials using human telomerase peptides have been performed. We have developed an immunogenic yet catalytically inactive human telomerase DNA construct that is in clinical trials with patients presenting solid tumors. Paralleling this human construct, we have developed a canine telomerase DNA vaccine, called pDUV5. When administered intradermally to mice combined with electrogene transfer, pDUV5 induced canine TERT specific cytotoxic T-cells as measured by IFN-γ ELISpot assay. Intradermal vaccination of healthy dogs with 400 μg of pDUV5 generated strong, broad and long lasting TERT specific cellular immune responses. In vitro immunization with cTERT peptides revealed the maintenance of cTERT specific T-cells in PBMCs from tumor bearing dogs showing that this repertoire was not depleted. This study highlights the potential of pDUV5 as a cancer vaccine and supports its evaluation for the treatment of spontaneous canine tumors.
Collapse
Affiliation(s)
| | | | | | | | - Christine Kreuz
- ImmunoPharmacology and Biosafety Lab, Bertin Pharma/CEA, Fontenay-aux-Roses 92265, France
| | | | | | | | | | | | | | | | | | - Pascal Clayette
- ImmunoPharmacology and Biosafety Lab, Bertin Pharma/CEA, Fontenay-aux-Roses 92265, France
| | | | - Simon Wain-Hobson
- Invectys, Paris BioPark, Paris 75013, France.,Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris 75015, France
| | - Pierre Langlade-Demoyen
- Invectys, Paris BioPark, Paris 75013, France.,Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, Paris 75015, France
| |
Collapse
|
2
|
Nougarede N, Bisceglia H, Rozières A, Goujon C, Boudet F, Laurent P, Vanbervliet B, Rodet K, Hennino A, Nicolas JF. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults. Hum Vaccin Immunother 2016; 10:2713-20. [PMID: 25483667 PMCID: PMC4977438 DOI: 10.4161/hv.29695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n=38) or IM 15 μg (n=42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine.
Collapse
Key Words
- BSA, bovine serum albumin
- CHMP, Committee for Medicinal Products for Human Use
- ELISA, enzyme-linked immunosorbent assay
- ELISPOT, enzyme-linked immunospot
- HI, hemagglutination inhibition
- ID, intradermal
- IM, intramuscular
- Ig, immunoglobulin
- PBMC, peripheral blood mononuclear cells
- PBS, phosphate-buffered saline
- adult
- immunogenicity
- intradermal influenza vaccine
- intramuscular vaccination
- trivalent influenza vaccine
Collapse
|
3
|
Accart N, Sergi F, Rooke R. Revisiting Fixation and Embedding Techniques for Optimal Detection of Dendritic Cell Subsets in Tissues. J Histochem Cytochem 2014; 62:661-71. [DOI: 10.1369/0022155414539963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organ-specific cell types are maintained by tissue homeostasis and may vary in nature and/or frequency in pathological situations. Moreover, within a cell lineage, some sub-populations, defined by combinations of cell-surface markers, may have specific functions. Dendritic cells are the epitome of such a population as they may be subdivided into discrete sub-groups with defined functions in specific compartments of various organs. Technically, to study the distribution of DC sub-populations, it involves performing multiparametric immunofluorescence on well-conserved organ structures. However, immunodetection may be impacted by protein cross-linking and antigenic epitope masking by the use of 10% neutral-buffered formalin. To circumvent this and to preserve a good morphological tissue structure, we evaluated alternative fixatives such as Periodate Lysine Paraformaldehyde or Tris Zinc fixatives in combination with other embedding techniques. The cryosection protocols were adapted for optimal antigen detection but offered a poor morphological preservation. We therefore developed a new methodology based on Tris Zinc fixative, gelatin-sucrose embedding and freezing. Using multiple DC markers, we demonstrate that this treatment is an optimal protocol for cell-surface marker detection on high-quality tissue sections.
Collapse
Affiliation(s)
- Nathalie Accart
- Transgene S.A., Illkirch Graffenstaden, France (NA, FS, RR)
- Novartis Institutes for Biomedical Research, Basel, Switzerland (NA)
- Fisher Scientific, Illkirch Graffenstaden., France (FS)
| | - Florinda Sergi
- Transgene S.A., Illkirch Graffenstaden, France (NA, FS, RR)
- Novartis Institutes for Biomedical Research, Basel, Switzerland (NA)
- Fisher Scientific, Illkirch Graffenstaden., France (FS)
| | - Ronald Rooke
- Transgene S.A., Illkirch Graffenstaden, France (NA, FS, RR)
- Novartis Institutes for Biomedical Research, Basel, Switzerland (NA)
- Fisher Scientific, Illkirch Graffenstaden., France (FS)
| |
Collapse
|
4
|
|
5
|
Lee CH, Masso-Welch P, Hajishengallis G, Connell TD. TLR2-dependent modulation of dendritic cells by LT-IIa-B5, a novel mucosal adjuvant derived from a type II heat-labile enterotoxin. J Leukoc Biol 2011; 90:911-21. [PMID: 21791597 DOI: 10.1189/jlb.0511236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A host of human pathogens invades the body at mucosal surfaces. Yet, strong, protective mucosal immune responses directed against those pathogens routinely cannot be induced without the use of adjuvants. Although the strongest mucosal adjuvants are members of the family of HLTs, the inherent toxicities of HLT holotoxins preclude their clinical use. Herein, it is shown that LT-IIa-B(5) enhances mucosal immune responses by modulating activities of DCs. i.n. immunization of mice with OVA in the presence of LT-IIa-B(5) recruited DCs to the NALT and significantly increased uptake of OVA by those DCs. Furthermore, LT-IIa-B(5) increased expression of CCR7 by DCs, which mediated enhanced migration of the cells from the NALT to the draining CLNs. LT-IIa-B(5) also enhanced maturation of DCs, as revealed by increased surface expression of CD40, CD80, and CD86. Ag-specific CD4(+) T cell proliferation was augmented in the CLNs of mice that had received i.n. LT-IIa-B(5). Finally, when used as an i.n. adjuvant, LT-IIa-B(5) dramatically increased the levels of OVA-specific salivary IgA and OVA-specific serum IgG. Strikingly, each of the activities induced by LT-IIa-B(5) was strictly TLR2-dependent. The data strongly suggest that the immunomodulatory properties of LT-IIa-B(5) depend on the productive modulation of mucosal DCs. Notably, this is the first report for any HLT to demonstrate in vivo the elicitation of strong, TLR2-dependent modulatory effects on DCs with respect to adjuvanticity.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
6
|
Mackenzie-Dyck S, Attah-Poku S, Juillard V, Babiuk LA, van Drunen Littel-van den Hurk S. The synthetic peptides bovine enteric β-defensin (EBD), bovine neutrophil β-defensin (BNBD) 9 and BNBD 3 are chemotactic for immature bovine dendritic cells. Vet Immunol Immunopathol 2011; 143:87-107. [PMID: 21764462 DOI: 10.1016/j.vetimm.2011.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/11/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Human and murine immature DCs (iDCs) are highly efficient in antigen capture and processing, while as mature cells they present antigen and are potent initiators of cell-mediated immune responses. Consequently, iDCs are logical targets for vaccine antigens. Originally discovered for their antimicrobial activity, and thought of as strictly part of the innate immune system, studies with defensins such as human β (beta)-defensin 2 (hBD2) and murine β-defensin 2 (mBD2) have shown that they can function as chemo-attractant for iDCs and, in vaccination strategies, can enhance antigen-specific adaptive immune responses. Most studies to date have been conducted in mice. In contrast, little is known about defensins in cattle. To expand our understanding of the role of defensins in modulating immune responses in cattle, DCs were generated from bovine monocytes and the immature state of these bovine DCs was characterized phenotypically and through functional assays. By day 3 (DC3), bovine monocyte-derived DCs stained positively for DC-specific receptors CD1, CD80/86, CD205, DC-Lamp and MMR. When compared to conventional 6-day DC cultures or DCs cultured for 10 days with and without maturation factors, these DC3 were functionally at their most immature stage. Fourteen of the 16 known bovine β-defensins were synthesized and the synthetic peptides were screened for their ability to attract bovine iDCs. Bovine DC3 were consistently attracted to BNBD3, an analog of BNBD3 (aBNBD3), BNBD9 and bovine EBD in vitro and to aBNBD3 in vivo. These results are the first to describe chemotactic ability of synthetic bovine β-defensins for immature bovine monocyte-derived DCs.
Collapse
Affiliation(s)
- Sarah Mackenzie-Dyck
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
7
|
|
8
|
|
9
|
Henri S, Franz Poulin L, Malissen B. Le derme de la peau s’enrichit d’une nouvelle population de cellules dendritiques. Med Sci (Paris) 2008; 24:346-7. [DOI: 10.1051/medsci/2008244346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|