1
|
Lulla RR, Buxton A, Krailo MD, Lazow MA, Boue DR, Leach JL, Lin T, Geller JI, Kumar SS, Nikiforova MN, Chandran U, Jogal SS, Nelson MD, Onar-Thomas A, Haas-Kogan DA, Cohen KJ, Kieran MW, Gajjar A, Drissi R, Pollack IF, Fouladi M. Vorinostat, temozolomide or bevacizumab with irradiation and maintenance BEV/TMZ in pediatric high-grade glioma: A Children's Oncology Group Study. Neurooncol Adv 2024; 6:vdae035. [PMID: 38596718 PMCID: PMC11003537 DOI: 10.1093/noajnl/vdae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Background Outcomes for children with high-grade gliomas (HGG) remain poor. This multicenter phase II trial evaluated whether concurrent use of vorinostat or bevacizumab with focal radiotherapy (RT) improved 1-year event-free survival (EFS) compared to temozolomide in children with newly diagnosed HGG who received maintenance temozolomide and bevacizumab. Methods Patients ≥ 3 and < 22 years with localized, non-brainstem HGG were randomized to receive RT (dose 54-59.4Gy) with vorinostat, temozolomide, or bevacizumab followed by 12 cycles of bevacizumab and temozolomide maintenance therapy. Results Among 90 patients randomized, the 1-year EFS for concurrent bevacizumab, vorinostat, or temozolomide with RT was 43.8% (±8.8%), 41.4% (±9.2%), and 59.3% (±9.5%), respectively, with no significant difference among treatment arms. Three- and five-year EFS for the entire cohort was 14.8% and 13.4%, respectively, with no significant EFS difference among the chemoradiotherapy arms. IDH mutations were associated with more favorable EFS (P = .03), whereas H3.3 K27M mutations (P = .0045) and alterations in PIK3CA or PTEN (P = .025) were associated with worse outcomes. Patients with telomerase- and alternative lengthening of telomeres (ALT)-negative tumors (n = 4) had an EFS of 100%, significantly greater than those with ALT or telomerase, or both (P = .002). While there was no difference in outcomes based on TERT expression, high TERC expression was associated with inferior survival independent of the telomere maintenance mechanism (P = .0012). Conclusions Chemoradiotherapy with vorinostat or bevacizumab is not superior to temozolomide in children with newly diagnosed HGG. Patients with telomerase- and ALT-negative tumors had higher EFS suggesting that, if reproduced, mechanism of telomere maintenance should be considered in molecular-risk stratification in future studies.
Collapse
Affiliation(s)
- Rishi R Lulla
- Department of Pediatrics, Hasbro Children’s Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Allen Buxton
- Department of Biostatistics, Children’s Oncology Group, Monrovia, California, USA
| | - Mark D Krailo
- Department of Biostatistics, Children’s Oncology Group, Monrovia, California, USA
| | - Margot A Lazow
- Pediatric Neuro‑Oncology Program, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel R Boue
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James L Leach
- Department of Radiology and Medical Imaging, Cincinnati Children’s Hospital Medical Center, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - James I Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Marina N Nikiforova
- Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sachin S Jogal
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marvin D Nelson
- Department of Radiology, Children’s Hospital Los Angeles, Keck University of Southern California School of Medicine, Los Angeles, California, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth J Cohen
- Division of Pediatric Oncology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark W Kieran
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ian F Pollack
- Department of Neurosurgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maryam Fouladi
- Pediatric Neuro‑Oncology Program, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
2
|
Bailleul Q, Rakotomalala A, Ferry I, Leblond P, Meignan S, Furlan A. [The art of war as applied to pediatric gliomas: Know your enemy]. Med Sci (Paris) 2021; 37:159-166. [PMID: 33591259 DOI: 10.1051/medsci/2020279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pediatric brain cancers represent the most frequent solid tumors and the leading cause of cancer-driven mortality in children. Pediatric High Grade Gliomas display a very poor prognosis. Among these, DIPG (Diffuse Intrinsic Pontine Gliomas), localized to the brain stem, cannot benefit from a total exeresis due to this critical location and to their highly infiltrating nature. Radiotherapy remains the standard treatment against these tumors for almost five decades, and attempts to improve the prognosis of patients with chemotherapy or targeted therapies have failed. Thanks to the rise of high throughput sequencing, the knowledge of molecular alterations in pediatric gliomas strongly progressed and allowed to highlight distinct biomolecular entities and to establish more accurate diagnoses. In this review, we summarize this new information and the perspectives that it brings for clinical strategies.
Collapse
Affiliation(s)
- Quentin Bailleul
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Andria Rakotomalala
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Isabelle Ferry
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Pierre Leblond
- Département de cancérologie pédiatrique, Institut d'hématologie et d'oncologie pédiatrique, Lyon, France
| | - Samuel Meignan
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Alessandro Furlan
- Unité tumorigenèse et résistance aux traitements, Centre Oscar Lambret, Place de Verdun, 59045 Lille, France - Univ. Lille, CNRS, Inserm, CHU Lille, Institut de recherche contre le cancer de Lille, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
3
|
Qiu L, Hu X, Jing Q, Zeng X, Chan KM, Han J. Mechanism of cancer: Oncohistones in action. J Genet Genomics 2018; 45:227-236. [PMID: 29804713 DOI: 10.1016/j.jgg.2018.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023]
Abstract
Oncohistones are histones with high-frequency point mutations that are associated with tumorigenesis. Although each histone variant is encoded by multiple genes, a single mutation in one allele of one gene seems to have a dominant effect over global histone H3 methylation level at the relevant amino acid residue. These oncohistones are highly tumor type specific. For example, H3K27M and H3G34V/R mutations occur only in pediatric brain cancers, whereas H3K36M and H3G34W/L have only been found in pediatric bone tumors. H1 mutations also seem to be exclusively linked to lymphomas. In this review, we discuss the occurrence, frequency and potential functional mechanisms of each oncohistone in tumorigenesis of its relevant cancer. We believe that further investigation into the mechanism regarding their tumor type specificity and cancer-related functions will shed new light on their application in cancer diagnosis and targeted therapy development.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xiaoyan Hu
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qian Jing
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xinyi Zeng
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Kui-Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Junhong Han
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China.
| |
Collapse
|
4
|
Saratsis AM, Kambhampati M, Snyder K, Yadavilli S, Devaney J, Harmon B, Hall J, Raabe EH, An P, Weingart M, Rood BR, Magge S, MacDonald TJ, Packer RJ, Nazarian J. Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol 2013; 127:881-95. [PMID: 24297113 PMCID: PMC4028366 DOI: 10.1007/s00401-013-1218-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/01/2013] [Accepted: 11/15/2013] [Indexed: 02/02/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly morbid form of pediatric brainstem glioma. Here, we present the first comprehensive protein, mRNA, and methylation profiles of fresh-frozen DIPG specimens (n = 14), normal brain tissue (n = 10), and other pediatric brain tumors (n = 17). Protein profiling identified 2,305 unique proteins indicating distinct DIPG protein expression patterns compared to other pediatric brain tumors. Western blot and immunohistochemistry validated upregulation of Clusterin (CLU), Elongation Factor 2 (EF2), and Talin-1 (TLN1) in DIPGs studied. Comparisons to mRNA expression profiles generated from tumor and adjacent normal brain tissue indicated two DIPG subgroups, characterized by upregulation of Myc (N-Myc) or Hedgehog (Hh) signaling. We validated upregulation of PTCH, a membrane receptor in the Hh signaling pathway, in a subgroup of DIPG specimens. DNA methylation analysis indicated global hypomethylation of DIPG compared to adjacent normal tissue specimens, with differential methylation of 24 genes involved in Hh and Myc pathways, correlating with protein and mRNA expression patterns. Sequencing analysis showed c.83A>T mutations in the H3F3A or HIST1H3B gene in 77 % of our DIPG cohort. Supervised analysis revealed a unique methylation pattern in mutated specimens compared to the wild-type DIPG samples. This study presents the first comprehensive multidimensional protein, mRNA, and methylation profiling of pediatric brain tumor specimens, detecting the presence of two subgroups within our DIPG cohort. This multidimensional analysis of DIPG provides increased analytical power to more fully explore molecular signatures of DIPGs, with implications for evaluating potential molecular subtypes and biomarker discovery for assessing response to therapy.
Collapse
Affiliation(s)
- Amanda M. Saratsis
- Department of Neurosurgery, Georgetown University Hospital, Washington DC, 20007, USA
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 20010, USA
| | - Madhuri Kambhampati
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 20010, USA
| | - Kendall Snyder
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 20010, USA
| | - Sridevi Yadavilli
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 20010, USA
| | - Joe Devaney
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| | - Brennan Harmon
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 20010, USA
| | - Jordan Hall
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 20010, USA
| | - Eric H. Raabe
- Division of Neuro-Pathology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Ping An
- Division of Neuro-Pathology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
- Neurobiology Department, College of Basic Medical Sciences, China Medical University, 110001, China
| | - Melanie Weingart
- Division of Neuro-Pathology, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Brian R. Rood
- Division of Oncology, Center for Cancer and Immunology Research, Children’s National Medical Center, Washington DC, 20010, USA
| | - Suresh Magge
- Division of Neurosurgery, Children’s National Medical Center, Washington DC, 20010, USA
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Roger J. Packer
- Division of Neurology, Center for Neuroscience Research, Children’s National Medical Center, Washington DC, 20010, USA
- Brain Tumor Institute, Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington DC, USA
| | - Javad Nazarian
- Center for Genetic Medicine, Children's National Medical Center, Washington DC, 20010, USA
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA
| |
Collapse
|
5
|
Gerges N, Fontebasso AM, Albrecht S, Faury D, Jabado N. Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm. Genome Med 2013; 5:66. [PMID: 23906214 PMCID: PMC3979088 DOI: 10.1186/gm470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain tumors are the leading cause of cancer-related death in children. High-grade astrocytomas (HGAs), in particular, are lethal in children across all ages. Integrative genome-wide analyses of the tumor's genome, transcriptome and epigenome, using next-generation sequencing technologies and genome-wide DNA methylation arrays, have provided valuable breakthroughs in our understanding of the pathogenesis of HGAs across all ages. Recent profiling studies have provided insight into the epigenetic nature of gliomas in young adults and HGAs in children, particularly with the identification of recurrent gain-of-function driver mutations in the isocitrate dehydrogenase 1 and 2 genes (IDH1/2) and the epigenetic influence of their oncometabolite 2-hydroxyglutarate, as well as mutations in the histone 3 variant 3 gene (H3F3A) and loss-of-function mutations in the histone 3 lysine 36 trimethyltransferase gene (SETD2). Mutations in H3F3A result in amino acid substitutions at residues thought to directly (K27M) or indirectly (G34R/V) affect histone post-translational modifications, suggesting they have the capacity to affect the epigenome in a profound manner. Here, we review recent genomic studies, and discuss evidence supporting the molecular characterization of pediatric HGAs to complement traditional approaches, such as histology of resected tumors. We also describe newly identified molecular mechanisms and discuss putative therapeutic approaches for HGAs specific to pediatrics, highlighting the necessity for the evolution of HGA disease management approaches.
Collapse
Affiliation(s)
- Noha Gerges
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3
| | - Adam M Fontebasso
- Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada, H3H1P3
| | - Damien Faury
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3
| | - Nada Jabado
- Departments of Pediatrics and Human Genetics, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3 ; Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, Quebec, Canada, H3Z2Z3
| |
Collapse
|
6
|
Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D, Korshunov A, Jones DTW, Witt H, Kool M, Albrecht S, Fleming A, Hadjadj D, Busche S, Lepage P, Montpetit A, Staffa A, Gerges N, Zakrzewska M, Zakrzewski K, Liberski PP, Hauser P, Garami M, Klekner A, Bognar L, Zadeh G, Faury D, Pfister SM, Jabado N, Majewski J. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 2013; 125:659-69. [PMID: 23417712 PMCID: PMC3631313 DOI: 10.1007/s00401-013-1095-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 12/16/2022]
Abstract
Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30% of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15% of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15% of pediatric HGGs (11/73) and 8% of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.
Collapse
Affiliation(s)
- Adam M. Fontebasso
- Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, QC Canada
| | | | - Dong-Anh Khuong-Quang
- Department of Human Genetics, McGill University and McGill University Health Centre, Montreal, QC Canada
| | - Xiao-Yang Liu
- Department of Human Genetics, McGill University and McGill University Health Centre, Montreal, QC Canada
| | - Dominik Sturm
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T. W. Jones
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hendrik Witt
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Paediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Albrecht
- Department of Pathology, Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC Canada
| | - Adam Fleming
- Division of Hemato-Oncology, Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC Canada
| | - Djihad Hadjadj
- Department of Human Genetics, McGill University and McGill University Health Centre, Montreal, QC Canada
| | - Stephan Busche
- Department of Human Genetics, McGill University and McGill University Health Centre, Montreal, QC Canada
| | - Pierre Lepage
- McGill University and Genome Quebec Innovation Centre, Montreal, QC Canada
| | | | - Alfredo Staffa
- McGill University and Genome Quebec Innovation Centre, Montreal, QC Canada
| | - Noha Gerges
- Department of Human Genetics, McGill University and McGill University Health Centre, Montreal, QC Canada
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Krzystof Zakrzewski
- Department of Neurosurgery, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Pawel P. Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Peter Hauser
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Miklos Garami
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Almos Klekner
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Laszlo Bognar
- Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital, Ontario, Canada
| | - Damien Faury
- Department of Human Genetics, McGill University and McGill University Health Centre, Montreal, QC Canada
| | - Stefan M. Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Paediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nada Jabado
- Division of Experimental Medicine, McGill University and McGill University Health Centre, Montreal, QC Canada
- Department of Human Genetics, McGill University and McGill University Health Centre, Montreal, QC Canada
- Division of Hemato-Oncology, Montreal Children’s Hospital, McGill University Health Centre, Montreal, QC Canada
- Department of Paediatrics, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC Canada
| | - Jacek Majewski
- McGill University and Genome Quebec Innovation Centre, Montreal, QC Canada
- Department of Human Genetics, McGill University and McGill University Health Centre, Montreal, QC Canada
| |
Collapse
|