1
|
Ben Yacoub T, Wohlschlegel J, Sahel JA, Zeitz C, Audo I. [CRISPR/Cas9: From research to therapeutic application]. J Fr Ophtalmol 2023; 46:398-407. [PMID: 36759244 DOI: 10.1016/j.jfo.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 02/10/2023]
Abstract
For several decades, genome engineering has raised interest among many researchers and physicians in the study of genetic disorders and their treatments. Compared to its predecessors, zinc-finger nucleases (ZFN) and transcription activator-like effectors (TALEN), clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) is currently the most efficient molecular tool for genome editing. This system, originally identified as a bacterial adaptive immune system, is capable of cutting and modifying any gene of a large number of living organisms. Numerous trials using this technology are being developed to provide effective treatment for several diseases, such as cancer, cardiovascular and ophthalmic disorders. In research, this technology is increasingly used for genetic disease modelling, providing meaningful models of relevant studies as well as a better understanding of underlying pathological mechanisms. Many molecular tools are now available to put this technique into practice in laboratories, and despite the technical and ethical issues raised by manipulation of the genome, CRIPSR/Cas9 offers a new breath of hope for therapeutic research around the world.
Collapse
Affiliation(s)
- T Ben Yacoub
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France.
| | - J Wohlschlegel
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France
| | - J-A Sahel
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France; CHNO des Quinze-Vingts, Inserm-DGOS CIC 1423, 75012 Paris, France; Department of ophthalmology, fondation ophtalmologique Adolphe De Rothschild, 75019 Paris, France; Department of ophthalmology, the university of Pittsburgh School of Medicine, Pittsburgh PA 15213, United States; Académie des sciences, institut de France, 75006 Paris, France
| | - C Zeitz
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France
| | - I Audo
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France; CHNO des Quinze-Vingts, Inserm-DGOS CIC 1423, 75012 Paris, France; Institute of ophthalmology, university College of London, London EC1V 9EL, United Kingdom
| |
Collapse
|
2
|
Völkel P, Dupret B, Le Bourhis X, Angrand PO. [The zebrafish model in oncology]. Med Sci (Paris) 2018; 34:345-353. [PMID: 29658479 DOI: 10.1051/medsci/20183404016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although cell culture and mouse models will remain a cornerstone of cancer research, the unique capabilities of the zebrafish outline the potential of this model for shedding light on cancer biology in vivo. Zebrafish develops cancers spontaneously, after chemical mutagenesis or through genetic manipulations. Furthermore, zebrafish cancers are similar to human tumors at the histological and molecular levels allowing the study of tumor initiation, progression and heterogeneity. Xenotransplantation of human cancer cells in embryos or adult zebrafish presents the advantage of following cancer cell behavior in vivo. Finally, zebrafish embryos are used in molecule screens and contribute to the identification of novel anti-cancer therapeutic strategies. Here, we review different involvements of the zebrafish model in cancer research.
Collapse
Affiliation(s)
- Pamela Völkel
- CNRS Lille, Inserm U908, Université de Lille, Bâtiment SN3, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Babara Dupret
- Inserm U908, Université de Lille, Bâtiment SN3, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Xuefen Le Bourhis
- Inserm U908, Université de Lille, Bâtiment SN3, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | - Pierre-Olivier Angrand
- Inserm U908, Université de Lille, Bâtiment SN3, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
3
|
Abstract
Recombinant AAV vectors (rAAV) are considered as very efficient tools for in vivo gene transfer. Accordingly, several preclinical and clinical gene therapy trials use these vectors to treat inherited and acquired diseases. rAAV vectors possess the capacity to persist for a long term in the transduced tissue in a transcriptionally active, extra-chromosomal (episomal) form. However, many studies have shown that a significant fraction of the rAAV genomes can also nonspecifically integrate into the host cell genome thus raising the possibility of insertional mutagenesis events. This review summarizes the current knowledge on integration of wild type and rAAV genomes and highlights the major questions which remain unresolved.
Collapse
Affiliation(s)
- Axel Rossi
- Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, équipe NucléoVir, École normale supérieure de Lyon, 46, allée d'Italie, 69007 Lyon, France
| | - Anna Salvetti
- Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, équipe NucléoVir, École normale supérieure de Lyon, 46, allée d'Italie, 69007 Lyon, France
| |
Collapse
|
4
|
Tremblay JP. [The CRISPR system can correct or modify the expression of genes responsible for hereditary diseases]. Med Sci (Paris) 2015; 31:1014-22. [PMID: 26576609 DOI: 10.1051/medsci/20153111016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new technology, called CRISPR, derived from the immune system of bacteria, uses a Cas9 nuclease and a guided RNA complementary to a 20 nucleotides sequence of a gene to induce double strand DNA breaks. This permits to modify specifically the targeted gene in plant, animal and human cells. Variants of the technique also permit to reduce or increase the expression of a selected gene. This technology may thus be used not only to understand the role of a gene but also to develop therapies for hereditary and acquired diseases.
Collapse
Affiliation(s)
- Jacques P Tremblay
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Centre de Recherche du CHU de Québec, 2705 boulevard Laurier, G1V Québec, Canada
| |
Collapse
|
5
|
Ryckebüsch L. [Potential of the zebrafish model to study congenital muscular dystrophies]. Med Sci (Paris) 2015; 31:912-9. [PMID: 26481031 DOI: 10.1051/medsci/20153110018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In order to better understand the complexity of congenital muscular dystrophies (CMD) and develop new strategies to cure them, it is important to establish new disease models. Due to its numerous helpful attributes, the zebrafish has recently become a very powerful animal model for the study of CMD. For some CMD, this vertebrate model is phenotypically closer to human pathology than the murine model. Over the last few years, researchers have developed innovative techniques to screen rapidly and on a large scale for muscle defects in zebrafish. Furthermore, new genome editing techniques in zebrafish make possible the identification of new disease models. In this review, the major attributes of zebrafish for CMD studies are discussed and the principal models of CMD in zebrafish are highlighted.
Collapse
Affiliation(s)
- Lucile Ryckebüsch
- Division of biological sciences, university of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, La Jolla, États-Unis
| |
Collapse
|
6
|
Asensio CS. Application de la méthode Cas9/CRISPR à l’étude de la fonction synaptique. Med Sci (Paris) 2015; 31:137-8. [DOI: 10.1051/medsci/20153102008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
7
|
Brodin P, DelNery E, Soleilhac E. [High content screening in chemical biology: overview and main challenges]. Med Sci (Paris) 2015; 31:187-96. [PMID: 25744266 DOI: 10.1051/medsci/20153102016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The last two decades have seen the development of high content screening (HCS) methodology and its adaptation for the evaluation of small molecules as drug candidates or their use as chemical tools for research purpose. HCS was initially set-up for the understanding of the mechanism of action of compounds by testing them on cell based-assays for pharmacological and toxicological studies. Since the last decade, the use of HCS has been extended to academic research laboratories and this technology has become the starting point for numerous projects aiming at the identification of molecular targets and cellular pathways for a given disease on which novel type of drugs could act. This screening approach relies on image capture of fluorescently labeled cells therefore generating a large amount of data that must be handled by appropriate automated image analysis methods and storage instrumentation. These latter in addition to the integration and data sharing are current challenges that HCS must still tackle.
Collapse
Affiliation(s)
- Priscille Brodin
- Inserm U1019, CNRS UMR8204, université de Lille-Nord de France, institut Pasteur de Lille, centre pour l'infection et l'immunité, 1, rue du professeur Calmette, 59000 Lille, France
| | - Elaine DelNery
- Institut Curie, centre de recherche, département de recherche translationnelle, 26, rue d'Ulm, 75005 Paris, France
| | - Emmanuelle Soleilhac
- Université Grenoble Alpes, institut de recherches en technologies et sciences pour le vivant (iRTSV) -biologie à grande échelle (BGE), 38000 Grenoble, France - CEA, iRTSV (Institut de recherches en technologies et sciences pour le vivant) - BGE (biologie à grande échelle) - criblages de molécules bioactives (CMBA), 38000 Grenoble, France - Inserm, BGE, 38000 Grenoble, France
| |
Collapse
|
8
|
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Various strategies have been proposed to address these pathologies; unfortunately no efficient treatment is currently available. In some cases, defects may be rescued by targeting into mitochondria nuclear DNA-expressed counterparts of the affected molecules. Another strategy is based on the induced shift of the heteroplasmy, meaning that wild type and mutated mtDNA can coexist in a single cell. The occurrence and severity of the disease depend on the heteroplasmy level, therefore, several approaches have been recently proposed to selectively reduce the levels of mutant mtDNA. Here we describe the experimental systems used to study the molecular mechanisms of mitochondrial dysfunctions: the respiratory deficient yeast strains, mammalian trans-mitochondrial cybrid cells and mice models, and overview the recent advances in development of various therapeutic approaches.
Collapse
Affiliation(s)
- Yann Tonin
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| | - Nina Entelis
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
9
|
|