1
|
Choi Y, Song Y, Kim YT, Lee SJ, Lee KG, Im SG. Multifunctional Printable Micropattern Array for Digital Nucleic Acid Assay for Microbial Pathogen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3098-3108. [PMID: 33423455 DOI: 10.1021/acsami.0c16862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The digital nucleic acid assay is a precise, sensitive, and reproducible method for determining the presence of individual target molecules separated in designated partitions; thus, this technique can be used for the nucleic acid detection. Here, we propose a multifunctional micropattern array capable of isolating individual target molecules into partitions and simultaneous on-site cell lysis to achieve a direct DNA extraction and digitized quantification thereof. The multifunctional micropattern array is fabricated by the deposition of a copolymer film, poly(2-dimethylaminomethyl styrene-co-hydroxyethyl methacrylate) (pDH), directly on a microfluidic chip surface via the photoinitiated chemical vapor deposition process, followed by hydrophobic microcontact printing (μCP) to define each partition for the nucleic acid isolation. The pDH layer is a positively charged surface, which is desirable for the bacterial lysis and DNA capture, while showing exceptional water stability for more than 24 h. The hydrophobic μCP-treated pDH surface is stable under aqueous conditions at a high temperature (70 °C) for 1 h and enables the rapid and reliable formation of thousands of sessile microdroplets for the compartmentalization of an aqueous sample solution without involving bulky and costly microfluidic devices. By assembling the multifunctional micropattern array into the microfluidic chip, the isothermal amplification in each partition can detect DNA templates over a concentration range of 0.01-2 ng/μL. The untreated bacterial cells can also be directly compartmentalized via the microdroplet formation, followed by the on-site cell lysis and DNA capture on the compartmentalized pDH surface. For Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus cells, cell numbers ranging from 1.4 × 104 to 1.4 × 107 can be distinguished by using the multifunctional micropattern array, regardless of the cell type. The multifunctional micropattern array developed in this study provides a novel multifunctional compartmentalization method for rapid, simple, and accurate digital nucleic acid assays.
Collapse
Affiliation(s)
- Yunho Choi
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, Gyeonggi-do 15073, Republic of Korea
| | - Seok Jae Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Mari R, Lambaudie É, Provansal M, Sabatier R. [Circulating tumor DNA assessment for gynaecological cancers management]. Bull Cancer 2019; 106:237-252. [PMID: 30765097 DOI: 10.1016/j.bulcan.2018.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023]
Abstract
Gynaecological cancers are frequent, with more than 16,000 cases per year in France for 6500 deaths. Few improvements in diagnostic methods, prognostic tools, and therapeutic strategies have occurred in the last two decades. Tumour genomic analyses from, at least in part, the Cancer Genome Atlas have identified some of the molecular alterations involved in gynaecological tumours growth and spreading. However, these data remain incomplete and have not led to dramatic changes in the clinical management of our patients. Moreover, they require invasive samples that are not suitable to objectives like screening/early diagnosis, assessment of treatment efficacy, monitoring of residual disease or early diagnosis of relapse. In the last years, the analysis of circulating tumour biomarkers (also called "liquid biopsies") based on tumour cells (circulating tumour cells) or tumour nucleotides (circulating DNA or RNA) has been massively explored through various indications, platforms, objectives; data related to circulating tumour DNA being the most important in terms of number of publications and interest for clinical practice. This review aims to describe the methods of analysis as well as the observations from the analysis of circulating tumour DNA in gynaecological tumours, from screening/early diagnosis to the adaptation of treatment for advanced stages, through choice of treatments and monitoring of subclinical disease.
Collapse
Affiliation(s)
- Roxane Mari
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France
| | - Éric Lambaudie
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département de chirurgie oncologique, CRCM, Marseille cedex 9, France; Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, CRCM, laboratoire d'oncologie prédictive, Marseille cedex 9, France
| | - Magali Provansal
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France
| | - Renaud Sabatier
- Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, département d'oncologie médicale, CRCM, Marseille cedex 9, France; Aix-Marseille university, CNRS U7258, Inserm U1068, institut Paoli-Calmettes, CRCM, laboratoire d'oncologie prédictive, Marseille cedex 9, France.
| |
Collapse
|
3
|
Nectoux J. Current, Emerging, and Future Applications of Digital PCR in Non-Invasive Prenatal Diagnosis. Mol Diagn Ther 2017; 22:139-148. [DOI: 10.1007/s40291-017-0312-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault SF. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn 2017; 18:7-17. [PMID: 29115895 DOI: 10.1080/14737159.2018.1400384] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Early detection of cancers through the analysis of ctDNA could have a significant impact on morbidity and mortality of cancer patients. However, using ctDNA for early cancer diagnosis is challenging partly due to the low amount of tumor DNA released in the circulation and its dilution within DNA originating from non-tumor cells. Development of new technologies such as droplet-based digital PCR (ddPCR) or optimized next generation sequencing (NGS) has greatly improved the sensitivity, specificity and precision for the detection of rare sequences. Areas covered: This paper will focus on the potential application of ddPCR and optimized NGS to detect ctDNA for detection of cancer recurrence and minimal residual disease as well as early diagnosis of cancer patients. Expert commentary: Compared to tumor tissue biopsies, blood-based ctDNA analyses are minimally invasive and accessible for regular follow-up of cancer patients. They are also described as a better picture of patients' pathology allowing to highlight both tumor heterogeneity and multiple tumor sites. After a brief introduction on the application of the follow-up of ctDNA using genetic or epigenetic biomarkers for prognosis and surveillance of cancer patients, potential perspectives of using ctDNA for early diagnosis of cancers will be presented.
Collapse
Affiliation(s)
- Mathilde Postel
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France
| | - Alice Roosen
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France
| | - Pierre Laurent-Puig
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France.,b Department of Biology , European Georges Pompidou Hospital, AP-HP , Paris , France
| | - Valerie Taly
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France
| | - Shu-Fang Wang-Renault
- a INSERM UMR-S1147, CNRS SNC5014; Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer , Paris , France
| |
Collapse
|
5
|
Perkins G, Lu H, Garlan F, Taly V. Droplet-Based Digital PCR: Application in Cancer Research. Adv Clin Chem 2016; 79:43-91. [PMID: 28212714 DOI: 10.1016/bs.acc.2016.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient characterization of genetic and epigenetic alterations in oncology, virology, or prenatal diagnostics requires highly sensitive and specific high-throughput approaches. Nevertheless, with the use of conventional methods, sensitivity and specificity were largely limited. By partitioning individual target molecules within distinct compartments, digital PCR (dPCR) could overcome these limitations and detect very rare sequences with unprecedented precision and sensitivity. In dPCR, the sample is diluted such that each individual partition will contain no more than one target sequence. Following the assay reaction, the dPCR process provides an absolute value and analyzable quantitative data. The recent coupling of dPCR with microfluidic systems in commercial platforms should lead to an essential tool for the management of patients with cancer, especially adapted to the analysis of precious samples. Applications in cancer research range from the analysis of tumor heterogeneity to that of a range of body fluids. Droplet-based dPCR is indeed particularly appropriate for the emerging field of liquid biopsy analysis. In this review, following an overview of the development in dPCR technology and different strategies based on the use of microcompartments, we will focus particularly on the applications and latest development of microfluidic droplet-based dPCR in oncology.
Collapse
Affiliation(s)
- G Perkins
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France; European Georges Pompidou Hospital, AP-HP - Paris Descartes University, Paris, France
| | - H Lu
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France
| | - F Garlan
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France
| | - V Taly
- Université Sorbonne Paris Cité, INSERM UMR-S1147, CNRS SNC 5014, Centre Universitaire des Saints-Pères, Equipe labélisée LIGUE Contre le Cancer, Paris, France.
| |
Collapse
|
6
|
Multiplex Detection of Rare Mutations by Picoliter Droplet Based Digital PCR: Sensitivity and Specificity Considerations. PLoS One 2016; 11:e0159094. [PMID: 27416070 PMCID: PMC4945036 DOI: 10.1371/journal.pone.0159094] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/27/2016] [Indexed: 01/01/2023] Open
Abstract
In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients.
Collapse
|
7
|
Chneiweiss H. [Since 30 years and tomorrow too: publishing biomedical science in French]. Med Sci (Paris) 2015; 31:119-20. [PMID: 25744252 DOI: 10.1051/medsci/20153102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hervé Chneiweiss
- Rédacteur en chef de médecine/sciences équipe plasticité gliale et tumeurs cérébrales Neuroscience Paris Seine-IBPS UMR8246 CNRS/U1130 Inserm/UMCR18 Université Pierre et Marie Curie 7, quai Saint Bernard 75005 Paris, France
| |
Collapse
|
8
|
Caen O, Nizard P, Garrigou S, Perez-Toralla K, Zonta E, Laurent-Puig P, Taly V. PCR digitale en micro-compartiments. Med Sci (Paris) 2015; 31:180-6. [DOI: 10.1051/medsci/20153102015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|