1
|
Picaud S, Sahel JA. [Vision restoration: science fiction or reality?]. Med Sci (Paris) 2020; 36:1038-1044. [PMID: 33151850 DOI: 10.1051/medsci/2020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Visual prostheses aim at restoring useful vision to patients who have become blind. This useful vision should enable them to regain autonomy in society for navigation, face recognition or reading. Two retinal prostheses have already obtained market authorization for patients affected by retinal dystrophies while a new device is in clinical trials for patients affected by age-related macular degeneration. Various prostheses, in particular cortical prostheses, are currently in clinical trials for optic neuropathies (glaucoma). Optogenetic therapy, an alternative strategy, has now reached the stage of clinical trials at the retinal level while moving forward at the cortical level. Other innovating strategies have obtained proofs of concepts in rodents but require a further validation in large animals prior to their evaluation on patients. Restoring vision should therefore become a reality for many patients even if this vision will not be as extensive and perfect as natural vision.
Collapse
Affiliation(s)
- Serge Picaud
- Institut de la Vision, Sorbonne Université, Inserm et CNRS, 17 rue Moreau, 75012 Paris, France
| | - José-Alain Sahel
- Institut de la Vision, Sorbonne Université, Inserm et CNRS, 17 rue Moreau, 75012 Paris, France - Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, États-Unis - Centre hospitalier national d'ophtalmologie (CHNO) des Quinze-Vingts, Département hospital-universitaire (DHU) Sight Restore, Inserm-DGOS CIC 1423, Paris, France - Fondation Ophtalmologique Rothschild, Paris, France
| |
Collapse
|
2
|
Victor Petersen A, Perrier JF. [Serotonin prevents temporal lobe epilepsy by inhibiting bursting neurons from the subiculum]. Med Sci (Paris) 2017; 33:727-729. [PMID: 28945558 DOI: 10.1051/medsci/20173308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anders Victor Petersen
- Département de neurosciences, université de Copenhague, Blegdamsvej 3, 2200 Copenhague, Danemark
| | - Jean-François Perrier
- Département de neurosciences, université de Copenhague, Blegdamsvej 3, 2200 Copenhague, Danemark
| |
Collapse
|
3
|
Suhan S, Ilona S, Chih-Chieh C, Isabelle D, Stéphane P, Antoine C, Claire M, Frédéric P. Experimental assessment of the safety and potential efficacy of high irradiance photostimulation of brain tissues. Sci Rep 2017; 7:43997. [PMID: 28276522 PMCID: PMC5343659 DOI: 10.1038/srep43997] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/02/2017] [Indexed: 01/09/2023] Open
Abstract
Optogenetics is widely used in fundamental neuroscience. Its potential clinical translation for brain neuromodulation requires a careful assessment of the safety and efficacy of repeated, sustained optical stimulation of large volumes of brain tissues. This study was performed in rats and not in non-human primates for ethical reasons. We studied the spatial distribution of light, potential damage, and non-physiological effects in vivo, in anesthetized rat brains, on large brain volumes, following repeated high irradiance photo-stimulation. We generated 2D irradiance and temperature increase surface maps based on recordings taken during optical stimulation using irradiance and temporal parameters representative of common optogenetics experiments. Irradiances of 100 to 600 mW/mm2 with 5 ms pulses at 20, 40, and 60 Hz were applied during 90 s. In vivo electrophysiological recordings and post-mortem histological analyses showed that high power light stimulation had no obvious phototoxic effects and did not trigger non-physiological functional activation. This study demonstrates the ability to illuminate cortical layers to a depth of several millimeters using pulsed red light without detrimental thermal damages.
Collapse
Affiliation(s)
- Senova Suhan
- Neurosurgery Department, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Henri-Mondor Albert-Chenevier, PePsy department, Créteil, F-94000, France
- U955 INSERM IMRB eq.14 Université Paris 12 UPEC, Faculté de Médecine, F-94010 Créteil, France
| | - Scisniak Ilona
- IMNC, CNRS Univ. Paris Sud, Univ. Paris Saclay Orsay F-91405, France
- Faculty of Physics, Univ. Warsaw, P-02-093 Poland
| | - Chiang Chih-Chieh
- IMNC, CNRS Univ. Paris Sud, Univ. Paris Saclay Orsay F-91405, France
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu city, 300, Taiwan
| | - Doignon Isabelle
- Laboratory of Cellular interactions and liver physiopathology, INSERM, Univ. Paris-Sud, Univ. Paris Saclay, Orsay, F-91405 France
| | - Palfi Stéphane
- Neurosurgery Department, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Henri-Mondor Albert-Chenevier, PePsy department, Créteil, F-94000, France
- U955 INSERM IMRB eq.14 Université Paris 12 UPEC, Faculté de Médecine, F-94010 Créteil, France
| | - Chaillet Antoine
- L2S, CentraleSupélec, Univ. Paris Saclay, Gif sur Yvette, F-91192 France
| | - Martin Claire
- IMNC, CNRS Univ. Paris Sud, Univ. Paris Saclay Orsay F-91405, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS F-75205, Paris, France
| | - Pain Frédéric
- IMNC, CNRS Univ. Paris Sud, Univ. Paris Saclay Orsay F-91405, France
| |
Collapse
|
4
|
Arango-Lievano M, Kaplitt MG. [Depression and addiction comorbidity: towards a common molecular target?]. Med Sci (Paris) 2015; 31:546-50. [PMID: 26059306 DOI: 10.1051/medsci/20153105017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The comorbidity of depression and cocaine addiction suggests shared mechanisms and anatomical pathways. Specifically, the limbic structures, such as the nucleus accumbens (NAc), play a crucial role in both disorders. P11 (S100A10) is a promising target for manipulating depression and addiction in mice. We summarized the recent genetic and viral strategies used to determine how the titration of p11 levels within the NAc affects hedonic behavior and cocaine reward learning in mice. In particular, p11 in the ChAT+ cells or DRD1+ MSN of the NAc, controls depressive-like behavior or cocaine reward, respectively. Treatments to counter maladaptation of p11 levels in the NAc could provide novel therapeutic opportunities for depression and cocaine addiction in humans.
Collapse
Affiliation(s)
- Margarita Arango-Lievano
- Département de physiologie, institut de génomique fonctionnelle, Inserm U661, CNRS UMR5203, 141, rue de la Cardonille, 34090 Montpellier, France
| | - Michael G Kaplitt
- Département de chirurgie neurologique, Weill Cornell Medical College, 1300 York Avenue, New York, 10021 NY, États-Unis
| |
Collapse
|