1
|
Smolen P, Ruiz L, Barai A, Minc N, Delacour D. [A role of astral microtubules in the orientation of cell division: when length counts… too!]. Med Sci (Paris) 2024; 40:608-612. [PMID: 39303109 DOI: 10.1051/medsci/2024087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Affiliation(s)
- Prune Smolen
- Université d'Aix-Marseille, CNRS UMR 7288, Institut de biologie du développement de Marseille, Centre Turing des systèmes vivants, Marseille, France - Équipe labellisée Fondation ARC
| | - Laura Ruiz
- Université d'Aix-Marseille, CNRS UMR 7288, Institut de biologie du développement de Marseille, Centre Turing des systèmes vivants, Marseille, France - Équipe labellisée Fondation ARC
| | - Amlan Barai
- Université d'Aix-Marseille, CNRS UMR 7288, Institut de biologie du développement de Marseille, Centre Turing des systèmes vivants, Marseille, France - Équipe labellisée Fondation ARC
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France - Équipe labellisée La ligue contre le cancer
| | - Delphine Delacour
- Université d'Aix-Marseille, CNRS UMR 7288, Institut de biologie du développement de Marseille, Centre Turing des systèmes vivants, Marseille, France - Équipe labellisée Fondation ARC
| |
Collapse
|
2
|
Yu W, Zhou H, Feng X, Liang X, Wei D, Xia T, Yang B, Yan L, Zhao X, Liu H. Mesenchymal stem cell secretome-loaded fibrin glue improves the healing of intestinal anastomosis. Front Bioeng Biotechnol 2023; 11:1103709. [PMID: 37064233 PMCID: PMC10102583 DOI: 10.3389/fbioe.2023.1103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Anastomotic leakage is a serious complication following gastrointestinal surgery and one of the leading causes of patient mortality. Despite the significant clinical and economic burden, there are currently no reliable treatment options to improve the healing of intestinal anastomosis and subsequently prevent anastomotic leakage. Recently, the development of regenerative medicine has shown promise for improving anastomotic healing. Recent studies have illustrated that stem cell-derived secretome can enhance tissue regeneration without the safety and ethical limitations of stem cell transplantation. Herein, we developed a fibrin glue topical delivery system loaded with mesenchymal stem cells (MSCs)-derived secretome for controlled delivery of bioactive factors, and evaluated its application potential in improving the healing of intestinal anastomosis. Under in vitro conditions, the MSCs secretome significantly promoted cell proliferation viability in a dose-dependent manner and resulted in the controlled release of growth factors via fibrin glue delivery. We established a rat surgical anastomotic model and experimentally found that MSCs secretome-loaded fibrin glue enhanced anastomotic bursting pressure, increased granulation tissue formation and collagen deposition, and significantly promoted anastomotic healing. Mechanistically, fibrin glue accelerated cell proliferation, angiogenesis, and macrophage M2 polarization at the surgical anastomotic site by releasing bioactive factors in the secretome, and it also alleviated the inflammatory response and cell apoptosis at the anastomotic site. Our results demonstrated for the first time that MSCs-derived secretome could promote the healing of intestinal anastomosis. Considering the accessibility and safety of the cell-free secretome, we believed that secretome-loaded fibrin glue would be a cell-free therapy to accelerate the healing of intestinal anastomosis with great potential for clinical translation.
Collapse
Affiliation(s)
- Wenwen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haicun Zhou
- Department of Breast Surgery, Gansu Maternal and Child Healthcare Hospital, Lanzhou, China
| | - Xueliang Feng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaoqin Liang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dengwen Wei
- Department of Abdominal Surgery, Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Tianhong Xia
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Bin Yang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Long Yan
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Xiaochen Zhao
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Hongbin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Intestinal Organoids: New Tools to Comprehend the Virulence of Bacterial Foodborne Pathogens. Foods 2022; 11:foods11010108. [PMID: 35010234 PMCID: PMC8750402 DOI: 10.3390/foods11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Foodborne diseases cause high morbidity and mortality worldwide. Understanding the relationships between bacteria and epithelial cells throughout the infection process is essential to setting up preventive and therapeutic solutions. The extensive study of their pathophysiology has mostly been performed on transformed cell cultures that do not fully mirror the complex cell populations, the in vivo architectures, and the genetic profiles of native tissues. Following advances in primary cell culture techniques, organoids have been developed. Such technological breakthroughs have opened a new path in the study of microbial infectious diseases, and thus opened onto new strategies to control foodborne hazards. This review sheds new light on cellular messages from the host–foodborne pathogen crosstalk during in vitro organoid infection by the foodborne pathogenic bacteria with the highest health burden. Finally, future perspectives and current challenges are discussed to provide a better understanding of the potential applications of organoids in the investigation of foodborne infectious diseases.
Collapse
|
4
|
Affiliation(s)
- Hervé Chneiweiss
- Président du Comité d'éthique de l'Inserm, Directeur du laboratoire Neuroscience Paris Seine - IBPS, Équipe Plasticité gliale et tumeurs cérébrales, UMR8246 CNRS/U1130 Inserm/Sorbonne Université, Campus Pierre et Marie Curie 7, quai Saint Bernard, 75005 Paris, France
| |
Collapse
|