1
|
Cherradi S, Garambois V, Marines J, Andrade AF, Fauvre A, Morand O, Fargal M, Mancouri F, Ayrolles-Torro A, Vezzo-Vié N, Jarlier M, Loussaint G, Huvelle S, Joubert N, Mazard T, Gongora C, Pourquier P, Boissière-Michot F, Rio MD. Improving the response to oxaliplatin by targeting chemotherapy-induced CLDN1 in resistant metastatic colorectal cancer cells. Cell Biosci 2023; 13:72. [PMID: 37041570 PMCID: PMC10091849 DOI: 10.1186/s13578-023-01015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Tumor resistance is a frequent cause of therapy failure and remains a major challenge for the long-term management of colorectal cancer (CRC). The aim of this study was to determine the implication of the tight junctional protein claudin 1 (CLDN1) in the acquired resistance to chemotherapy. METHODS Immunohistochemistry was used to determine CLDN1 expression in post-chemotherapy liver metastases from 58 CRC patients. The effects of oxaliplatin on membrane CLDN1 expression were evaluated by flow cytometry, immunofluorescence and western blotting experiments in vitro and in vivo. Phosphoproteome analyses, proximity ligation and luciferase reporter assays were used to unravel the mechanism of CLDN1 induction. RNAseq experiments were performed on oxaliplatin-resistant cell lines to investigate the role of CLDN1 in chemoresistance. The "one-two punch" sequential combination of oxaliplatin followed by an anti-CLDN1 antibody-drug conjugate (ADC) was tested in both CRC cell lines and murine models. RESULTS We found a significant correlation between CLDN1 expression level and histologic response to chemotherapy, CLDN1 expression being the highest in resistant metastatic residual cells of patients showing minor responses. Moreover, in both murine xenograft model and CRC cell lines, CLDN1 expression was upregulated after exposure to conventional chemotherapies used in CRC treatment. CLDN1 overexpression was, at least in part, functionally related to the activation of the MAPKp38/GSK3β/Wnt/β-catenin pathway. Overexpression of CLDN1 was also observed in oxaliplatin-resistant CRC cell lines and was associated with resistance to apoptosis, suggesting an anti-apoptotic role for CLDN1. Finally, we demonstrated that the sequential treatment with oxaliplatin followed by an anti-CLDN1 ADC displayed a synergistic effect in vitro and in in vivo. CONCLUSION Our study identifies CLDN1 as a new biomarker of acquired resistance to chemotherapy in CRC patients and suggests that a "one-two punch" approach targeting chemotherapy-induced CLDN1 expression may represent a therapeutic opportunity to circumvent resistance and to improve the outcome of patients with advanced CRC.
Collapse
Affiliation(s)
- Sara Cherradi
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Véronique Garambois
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Johanna Marines
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Augusto Faria Andrade
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Alexandra Fauvre
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Olivia Morand
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Manon Fargal
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Ferial Mancouri
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Adeline Ayrolles-Torro
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Nadia Vezzo-Vié
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Marta Jarlier
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
- Biometry Department, ICM, Montpellier, France
| | - Gerald Loussaint
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Steve Huvelle
- GICC, Team IMT, University of Tours, Tours, 7501, F-37032, France
| | - Nicolas Joubert
- GICC, Team IMT, University of Tours, Tours, 7501, F-37032, France
| | - Thibault Mazard
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
- Department of Medical Oncology, ICM, Montpellier, France
| | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Philippe Pourquier
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
| | - Florence Boissière-Michot
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France
- Translational Research Unit, ICM, Montpellier, France
| | - Maguy Del Rio
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut du Cancer de Montpellier, 208 rue des Apothicaires, Montpellier Cedex 5, F-34298, France.
| |
Collapse
|
2
|
Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021; 23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
Presently, most of the treatment strategies for cancer are focused on the surgical removal of cancerous tumors, along with physical and chemical treatment such as radiotherapy and chemotherapy, respectively. The primary issue associated with these methods is the inhibition of normal cell growth and serious side effects associated with systemic toxicity. The traditional chemotherapeutics which were delivered systemically were inadequate and had serious dose limiting side effects. Recent advances in the development of chemotherapeutics have simultaneously paved the way for efficient targeted drug delivery. Despite the advances in the field of oncogenic drugs, several limitations remain, such as early blood clearance, acquired resistance against cytotoxic agents, toxicity associated with chemotherapeutics, and site-specific drug delivery. Hence, this review article focuses on the recent scientific advancements made in different types of drug delivery systems, including, organic nanocarriers (polymers, albumins, liposomes, and micelles), inorganic nanocarriers (mesoporous silica nanoparticles, gold nanoparticles, platinum nanoparticles, and carbon nanotubes), aptamers, antibody-drug conjugates, and peptides. These targeted drug delivery approaches offer numerous advantages such as site-specific drug delivery, minimal toxicity, better bioavailability, and an increased overall efficacy of the chemotherapeutics. Graphical abstract.
Collapse
|
3
|
Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel) 2020; 13:ph13090245. [PMID: 32937862 PMCID: PMC7558467 DOI: 10.3390/ph13090245] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.
Collapse
Affiliation(s)
- Nicolas Joubert
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
- Correspondence:
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France;
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Caroline Denevault-Sabourin
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
| |
Collapse
|