1
|
Gandjui NVT, Njouendou AJ, Gemeg EN, Fombad FF, Ritter M, Kien CA, Chunda VC, Fru J, Esum ME, Hübner MP, Enyong PA, Hoerauf A, Wanji S. Establishment of an in vitro culture system to study the developmental biology of Onchocerca volvulus with implications for anti-Onchocerca drug discovery and screening. PLoS Negl Trop Dis 2021; 15:e0008513. [PMID: 33561123 PMCID: PMC7899360 DOI: 10.1371/journal.pntd.0008513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/22/2021] [Accepted: 01/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background Infections with Onchocerca volvulus nematodes remain a threat in Sub-Saharan Africa after three decades of ivermectin mass drug administration. Despite this effort, there is still an urgent need for understanding the parasite biology especially the mating behaviour and nodule formation as well as the development of more potent drugs that can clear the developmental (L3, L4, L5) and adult stages of the parasite and inhibit parasite reproduction and behaviour. Methodology/Principal findings Prior to culture, freshly harvested O. volvulus L3 larvae from dissected Simulium damnosum flies were purified by centrifugation using a 30% Percoll solution to eliminate fly tissue debris and contaminants. Parasites were cultured in both cell-free and cell-based co-culture systems and monitored daily by microscopic visual inspection. Exhausted culture medium was replenished every 2–3 days. The cell-free culture system (DMEM supplemented with 10% NCS) supported the viability and motility of O. volvulus larvae for up to 84 days, while the co-culture system (DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells) extended worm survival for up to 315 days. Co-culture systems alone promoted two consecutive parasite moults (L3 to L4 and L4 to L5) with highest moulting rates (69.2±30%) observed in DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells, while no moult was observed in DMEM supplemented with 10% NCS and seeded on LEC feeder cells. In DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells, O. volvulus adult male worms attached to the vulva region of adult female worms and may have mated in vitro. Apparent early initiation of nodulogenesis was observed in both DMEM supplemented with 10% FBS and seeded on LLC-MK2 and DMEM supplemented with 10% NCS and seeded on LLC-MK2 systems. Conclusions/Significance The present study describes an in vitro system in which O. volvulus L3 larvae can be maintained in culture leading to the development of adult stages. Thus, this in vitro system may provide a platform to investigate mating behaviour and early stage of nodulogenesis of O. volvulus adult worms that can be used as additional targets for macrofilaricidal drug screening. River blindness affects people living in mostly remote and underserved rural communities in some of the poorest areas of the world. Although significant efforts have been achieved towards the reduction of disease morbidity, onchocerciasis still affects millions of people in Sub-Saharan Africa. The current control strategy is the annual mass administration of ivermectin which has accumulated several drawbacks over time, especially the action of the drug is solely microfilaricidal, very long treatment period (15–17 years) and reports of ivermectin losing its efficacy; thus, raising the urgent need for new adulticidal compounds. Our study has established an in vitro platform capable of supporting the growth and development of Onchocerca volvulus for up to 315 days, enabling the observation of parasite developmental processes: moulting (from the infective L3 stage to adults), increase in morphometry, the attachment of adult male and female worms and the potential initiation of nodulogenesis. Moreover, the platform might provide more insight into O. volvulus adult worms behavioural pattern in vitro. Also, our findings provide more avenues for mass production of different parasite stages, the investigation of parasite developmental biology and the identification of targets for drug discovery against different developmental stages of this filarial parasite within 315 days.
Collapse
Affiliation(s)
- Narcisse V. T. Gandjui
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Abdel J. Njouendou
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Eric N. Gemeg
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Fanny F. Fombad
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Chi A. Kien
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Valerine C. Chunda
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jerome Fru
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Mathias E. Esum
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Peter A. Enyong
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Samuel Wanji
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- * E-mail:
| |
Collapse
|
2
|
Boursou D, Ndjonka D, Eisenbarth A, Manchang K, Paguem A, Ngwasiri NN, Vildina JD, Abanda B, Krumkamp R, van Hoorn S, Renz A, Achukwi MD, Liebau E, Brattig NW. Onchocerca - infected cattle produce strong antibody responses to excretory-secretory proteins released from adult male Onchocerca ochengi worms. BMC Infect Dis 2018; 18:200. [PMID: 29716541 PMCID: PMC5930424 DOI: 10.1186/s12879-018-3109-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background The front line molecules from filarial worms and other nematodes or helminthes are their Excretory-Secretory (ES) products. Their interaction with the host cells, proteins and immune system accounts for the skin and eye pathology or hyposensitivity observed in human onchocerciasis. ES products and adult worms’ crude extracts from Onchocerca ochengi, a filarial nematode that infects the African zebu cattle, were utilized in the present study as a model for studying Onchocerca volvulus that causes river blindness in man. Methods The ES products were generated from adult male and female worms in vitro and analyzed with poly acrylamide gel electrophoresis (PAGE) and enzyme-linked immunosorbent assay (ELISA) using sera from Onchocerca-infected cattle and humans. The cattle sera were collected from a herd that had been exposed for six years to natural transmission of Onchocerca spp. The expressed reactivity was evaluated and differences analyzed statistically using Kruskal-Wallis rank and Chi-square tests. Results The gel electrophoretic analyses of 156 ES products from O. ochengi female and male worms and of two somatic extracts from three females and 25 males revealed differences in the protein pattern showing pronounced bands at 15, 30–50 and 75 kDa for male ES proteins and 15, 25 and 40–75 kDa for somatic extracts, respectively and less than 100 kDa for female worms. Proteins in the ES products and somatic extracts from female and male Onchocerca ochengi worms were recognized by IgG in sera from both Onchocerca-exposed cattle and humans. Bovine serum antibodies reacted more strongly with proteins in the somatic extracts than with those in the ES products. Interestingly, the reaction was higher with male ES products than with ES products from female worms, suggesting that the males which migrate from one nodule to another are more exposed to the host immune system than the females which remain encapsulated in intradermal nodules. Conclusions This study demonstrates that O. ochengi ES products and, in particular, extracts from male filariae may represent a good source of immunogenic proteins and potential vaccine candidates.
Collapse
Affiliation(s)
- Djafsia Boursou
- University of Ngaoundéré, Faculty of Science, Ngaoundéré, Cameroon
| | | | - Albert Eisenbarth
- Programme Onchocercoses, Field research station of the University of Tübingen, Ngaoundéré, Cameroon.,Eberhard Karls University, Institute of Evolution and Ecology, Comparative Zoology, Tübingen, Germany
| | - Kingsley Manchang
- Veterinary Research Laboratory, IRAD Wakwa Regional Centre, Ngaoundéré, Cameroon
| | - Archille Paguem
- University of Ngaoundéré, Faculty of Science, Ngaoundéré, Cameroon
| | | | | | - Babette Abanda
- University of Ngaoundéré, Faculty of Science, Ngaoundéré, Cameroon
| | - Ralf Krumkamp
- Bernhard Nocht Institute of Tropical Medicine, Disease Epidemiology Department, Hamburg, Germany
| | - Silke van Hoorn
- Bernhard Nocht Institute of Tropical Medicine, Disease Epidemiology Department, Hamburg, Germany
| | - Alfons Renz
- Eberhard Karls University, Institute of Evolution and Ecology, Comparative Zoology, Tübingen, Germany
| | | | | | - Norbert W Brattig
- Bernhard Nocht Institute of Tropical Medicine, Disease Epidemiology Department, Hamburg, Germany
| |
Collapse
|
3
|
Identification and Validation of Loa loa Microfilaria-Specific Biomarkers: a Rational Design Approach Using Proteomics and Novel Immunoassays. mBio 2016; 7:e02132-15. [PMID: 26884435 PMCID: PMC4791851 DOI: 10.1128/mbio.02132-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunoassays are currently needed to quantify Loa loa microfilariae (mf). To address this need, we have conducted proteomic and bioinformatic analyses of proteins present in the urine of a Loa mf-infected patient and used this information to identify putative biomarkers produced by L. loa mf. In total, 70 of the 15,444 described putative L. loa proteins were identified. Of these 70, 18 were L. loa mf specific, and 2 of these 18 (LOAG_16297 and LOAG_17808) were biologically immunogenic. We developed novel reverse luciferase immunoprecipitation system (LIPS) immunoassays to quantify these 2 proteins in individual plasma samples. Levels of these 2 proteins in microfilaremic L. loa-infected patients were positively correlated to mf densities in the corresponding blood samples (r = 0.71 and P < 0.0001 for LOAG_16297 and r = 0.61 and P = 0.0002 for LOAG_17808). For LOAG_16297, the levels in plasma were significantly higher in Loa-infected (geometric mean [GM], 0.045 µg/ml) than in uninfected (P < 0.0001), Wuchereria bancrofti-infected (P = 0.0005), and Onchocerca volvulus-infected (P < 0.0001) individuals, whereas for LOAG_17808 protein, they were not significantly different between Loa-infected (GM, 0.123 µg/ml) and uninfected (P = 0.06) and W. bancrofti-infected (P = 0.32) individuals. Moreover, only LOAG_16297 showed clear discriminative ability between L. loa and the other potentially coendemic filariae. Indeed, the specificity of the LOAG_16297 reverse LIPS assay was 96% (with a sensitivity of 77%). Thus, LOAG_16297 is a very promising biomarker that will be exploited in a quantitative point-of-care immunoassay for determination of L. loa mf densities. Loa loa, the causative agent of loiasis, is a parasitic nematode transmitted to humans by the tabanid Chrysops fly. Some individuals infected with L. loa microfilariae (mf) in high densities are known to experience post-ivermectin severe adverse events (SAEs [encephalopathy, coma, or death]). Thus, ivermectin-based mass drug administration (MDA) programs for onchocerciasis and for lymphatic filariasis control have been interrupted in parts of Africa where these filarial infections coexist with L. loa. To allow for implementation of MDA for onchocerciasis and lymphatic filariasis, tools that can accurately identify people at risk of developing post-ivermectin SAEs are needed. Our study, using host-based proteomics in combination with novel immunoassays, identified a single Loa-specific antigen (LOAG_16297) that can be used as a biomarker for the prediction of L. loa mf levels in the blood of infected patients. Therefore, the use of such biomarker could be important in the point-of-care assessment of L. loa mf densities.
Collapse
|