1
|
Campagnaro GD, Elati HAA, Balaska S, Martin Abril ME, Natto MJ, Hulpia F, Lee K, Sheiner L, Van Calenbergh S, de Koning HP. A Toxoplasma gondii Oxopurine Transporter Binds Nucleobases and Nucleosides Using Different Binding Modes. Int J Mol Sci 2022; 23:ijms23020710. [PMID: 35054895 PMCID: PMC8776092 DOI: 10.3390/ijms23020710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei strain from which nucleobase transporters have been deleted. Tg244440 transported hypoxanthine and guanine with similar affinity (Km ~1 µM), while inosine and guanosine displayed Ki values of 4.05 and 3.30 µM, respectively. Low affinity was observed for adenosine, adenine, and pyrimidines, classifying Tg244440 as a high affinity oxopurine transporter. Purine analogues were used to probe the substrate-transporter binding interactions, culminating in quantitative models showing different binding modes for oxopurine bases, oxopurine nucleosides, and adenosine. Hypoxanthine and guanine interacted through protonated N1 and N9, and through unprotonated N3 and N7 of the purine ring, whereas inosine and guanosine mostly employed the ribose hydroxy groups for binding, in addition to N1H of the nucleobase. Conversely, the ribose moiety of adenosine barely made any contribution to binding. Tg244440 is the first gene identified to encode a high affinity oxopurine transporter in T. gondii and, to the best of our knowledge, the first purine transporter to employ different binding modes for nucleosides and nucleobases.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Hamza A. A. Elati
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Sofia Balaska
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Maria Esther Martin Abril
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Kelly Lee
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Lilach Sheiner
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
- Correspondence: ; Tel.: +44-141-3303753
| |
Collapse
|
2
|
Campagnaro GD, de Koning HP. Purine and pyrimidine transporters of pathogenic protozoa - conduits for therapeutic agents. Med Res Rev 2020; 40:1679-1714. [PMID: 32144812 DOI: 10.1002/med.21667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Purines and pyrimidines are essential nutrients for any cell. Most organisms are able to synthesize their own purines and pyrimidines, but this ability was lost in protozoans that adapted to parasitism, leading to a great diversification in transporter activities in these organisms, especially for the acquisition of amino acids and nucleosides from their hosts throughout their life cycles. Many of these transporters have been shown to have sufficiently different substrate affinities from mammalian transporters, making them good carriers for therapeutic agents. In this review, we summarize the knowledge obtained on purine and pyrimidine activities identified in protozoan parasites to date and discuss their importance for the survival of these parasites and as drug carriers, as well as the perspectives of developments in the field.
Collapse
Affiliation(s)
- Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, UK
| |
Collapse
|
3
|
Clinically Available Medicines Demonstrating Anti-Toxoplasma Activity. Antimicrob Agents Chemother 2015; 59:7161-9. [PMID: 26392504 DOI: 10.1128/aac.02009-15] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite of humans and other mammals, including livestock and companion animals. While chemotherapeutic regimens, including pyrimethamine and sulfadiazine regimens, ameliorate acute or recrudescent disease such as toxoplasmic encephalitis or ocular toxoplasmosis, these drugs are often toxic to the host. Moreover, no approved options are available to treat infected women who are pregnant. Lastly, no drug regimen has shown the ability to eradicate the chronic stage of infection, which is characterized by chemoresistant intracellular cysts that persist for the life of the host. In an effort to promote additional chemotherapeutic options, we now evaluate clinically available drugs that have shown efficacy in disease models but which lack clinical case reports. Ideally, less-toxic treatments for the acute disease can be identified and developed, with an additional goal of cyst clearance from human and animal hosts.
Collapse
|
4
|
Seier JV, Mdhluli M, Collop T, Davids A, Laubscher R. Voluntary consumption of substances of unknown palatability by vervet monkeys: a refinement. J Med Primatol 2008; 37:88-92. [PMID: 18333919 DOI: 10.1111/j.1600-0684.2007.00231.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pure compounds and herbal medicines, had to be administered orally to vervet monkeys for testing. A reliable method was sought to avoid daily gavaging. METHODS Substances were incorporated into the maize meal based diet of this facility for voluntary consumption. Food intake was monitored. RESULTS In all but one case, consumption of the treated food was in excess of 90%. In all cases, the purpose of the study was achieved. Habituation was usually only required to the vehicle, and was accomplished by incremental increases to the desired concentration. Aversion was overcome by the addition of a small amount of honey. Plasma concentrations of a compound metabolite could be measured in one case after gavage and food consumption, and were similar for both methods. CONCLUSION The method enables reliable voluntary consumption of diverse substances. Since stressful gavaging is avoided, it is a valuable contribution to the 3Rs.
Collapse
Affiliation(s)
- J V Seier
- Primate Unit, MRC, Tygerberg, South Africa.
| | | | | | | | | |
Collapse
|