1
|
Njotto LL, Senyoni W, Cronie O, Alifrangis M, Stensgaard AS. Quantitative modelling for dengue and Aedes mosquitoes in Africa: A systematic review of current approaches and future directions for Early Warning System development. PLoS Negl Trop Dis 2024; 18:e0012679. [PMID: 39591452 PMCID: PMC11630623 DOI: 10.1371/journal.pntd.0012679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/10/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The rapid spread and growing number of dengue cases worldwide, alongside the absence of comprehensive vaccines and medications, highlights the critical need for robust tools to monitor, prevent, and control the disease. This review aims to provide an updated overview of important covariates and quantitative modelling techniques used to predict or forecast dengue and/or its vector Aedes mosquitoes in Africa. A systematic search was conducted across multiple databases, including PubMed, EMBASE, EBSCOhost, and Scopus, restricted to studies conducted in Africa and published in English. Data management and extraction process followed the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' (PRISMA) framework. The review identified 30 studies, with the majority (two-thirds) focused on models for predicting Aedes mosquito populations dynamics as a proxy for dengue risk. The remainder of the studies utilized human dengue cases, incidence or prevalence data as an outcome. Input data for mosquito and dengue risk models were mainly obtained from entomological studies and cross-sectional surveys, respectively. More than half of the studies (56.7%) incorporated climatic factors, such as rainfall, humidity, and temperature, alongside environmental, demographic, socio-economic, and larval/pupal abundance factors as covariates in their models. Regarding quantitative modelling techniques, traditional statistical regression methods like logistic and linear regression were preferred (60.0%), followed by machine learning models (16.7%) and mixed effects models (13.3%). Notably, only 36.7% of the models disclosed variable selection techniques, and a mere 20.0% conducted model validation, highlighting a significant gap in reporting methodology and assessing model performance. Overall, this review provides a comprehensive overview of potential covariates and methodological approaches currently applied in the African context for modelling dengue and/or its vector, Aedes mosquito. It also underscores the gaps and challenges posed by limited surveillance data availability, which hinder the development of predictive models to be used as early warning systems in Africa.
Collapse
Affiliation(s)
- Lembris Laanyuni Njotto
- College of Information and Communication Technologies, University of Dar Es Salaam, (CoICT—UDSM), Dar Es Salaam, Tanzania
- Department of Mathematics and ICT, College of Business Education, Dar Es Salaam, Tanzania
| | - Wilfred Senyoni
- College of Information and Communication Technologies, University of Dar Es Salaam, (CoICT—UDSM), Dar Es Salaam, Tanzania
| | - Ottmar Cronie
- Department of Mathematical Sciences, Chalmers University of Technology & University of Gothenburg, Gothenburg, Sweden
| | - Michael Alifrangis
- Department of Immunology and Microbiology, Centre for translational Medicine and Parasitology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna-Sofie Stensgaard
- Section for Parasitology and Aquatic Pathobiology, Department for Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Velu RM, Kwenda G, Bosomprah S, Chisola MN, Simunyandi M, Chisenga CC, Bumbangi FN, Sande NC, Simubali L, Mburu MM, Tembo J, Bates M, Simuunza MC, Chilengi R, Orba Y, Sawa H, Simulundu E. Ecological Niche Modeling of Aedes and Culex Mosquitoes: A Risk Map for Chikungunya and West Nile Viruses in Zambia. Viruses 2023; 15:1900. [PMID: 37766306 PMCID: PMC10535978 DOI: 10.3390/v15091900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
The circulation of both West Nile Virus (WNV) and Chikungunya Virus (CHIKV) in humans and animals, coupled with a favorable tropical climate for mosquito proliferation in Zambia, call for the need for a better understanding of the ecological and epidemiological factors that govern their transmission dynamics in this region. This study aimed to examine the contribution of climatic variables to the distribution of Culex and Aedes mosquito species, which are potential vectors of CHIKV, WNV, and other arboviruses of public-health concern. Mosquitoes collected from Lusaka as well as from the Central and Southern provinces of Zambia were sorted by species within the Culex and Aedes genera, both of which have the potential to transmit viruses. The MaxEnt software was utilized to predict areas at risk of WNV and CHIKV based on the occurrence data on mosquitoes and environmental covariates. The model predictions show three distinct spatial hotspots, ranging from the high-probability regions to the medium- and low-probability regions. Regions along Lake Kariba, the Kafue River, and the Luangwa Rivers, as well as along the Mumbwa, Chibombo, Kapiri Mposhi, and Mpika districts were predicted to be suitable habitats for both species. The rainfall and temperature extremes were the most contributing variables in the predictive models.
Collapse
Affiliation(s)
- Rachel Milomba Velu
- Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (M.S.); (C.C.C.); (R.C.)
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.C.S.); (H.S.)
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Samuel Bosomprah
- Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (M.S.); (C.C.C.); (R.C.)
- Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana
| | - Moses Ngongo Chisola
- Department of Geography and Environmental Studies, School of Natural Sciences, University of Zambia, Lusaka P.O. Box 32379, Zambia;
| | - Michelo Simunyandi
- Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (M.S.); (C.C.C.); (R.C.)
| | - Caroline Cleopatra Chisenga
- Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (M.S.); (C.C.C.); (R.C.)
| | - Flavien Nsoni Bumbangi
- Department of Medicine and Clinical Sciences, School of Medicine, Eden University, Lusaka P.O. Box 37727, Zambia;
| | - Nicholus Chintu Sande
- National Malaria Elimination Centre, Chainama Hills Hospital Grounds, Lusaka P.O. Box 32509, Zambia;
| | - Limonty Simubali
- Macha Research Trust, Choma P.O. Box 630166, Zambia; (L.S.); (M.M.M.)
| | | | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka 10101, Zambia; (J.T.); (M.B.)
| | - Matthew Bates
- HerpeZ, University Teaching Hospital, Lusaka 10101, Zambia; (J.T.); (M.B.)
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincolnshire LN6 7TS, UK
| | - Martin Chitolongo Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.C.S.); (H.S.)
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Roma Chilengi
- Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (M.S.); (C.C.C.); (R.C.)
- Zambia National Public Health Institute, Ministry of Health, Lusaka P.O. Box 51925, Zambia
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N 20 W10, Kita-Ku, Sapporo 001-0020, Japan;
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido 060-0808, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.C.S.); (H.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido 060-0808, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0021, Japan
- International Collaboration Unit, Global Virus Network, Baltimore, MD 21201, USA
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia; (M.C.S.); (H.S.)
- Macha Research Trust, Choma P.O. Box 630166, Zambia; (L.S.); (M.M.M.)
| |
Collapse
|
3
|
Imane S, Oumaima B, Kenza K, Laila I, Youssef EM, Zineb S, Mohamed EJ. A Review on Climate, Air Pollution, and Health in North Africa. Curr Environ Health Rep 2022; 9:276-298. [PMID: 35352307 PMCID: PMC8964241 DOI: 10.1007/s40572-022-00350-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize and provide clear insights into studies that evaluate the interaction between air pollution, climate, and health in North Africa. RECENT FINDINGS Few studies have estimated the effects of climate and air pollution on health in North Africa. Most of the studies highlighted the evidence of the link between climate and air pollution as driving factors and increased mortality and morbidity as health outcomes. Each North African country prioritized research on a specific health factor. It was observed that the health outcome from each driving factor depends on the studied area and data availability. The latter is a major challenge in the region. As such, more studies should be led in the future to cover more areas in North Africa and when more data are available. Data availability will help to explore the applicability of different tools and techniques new to the region. This review explores studies related to climate and air pollution, and their possible impacts on health in North Africa. On one hand, air quality studies have focused mainly on particulate matter exceedance levels and their long-term exposure impacts, namely, morbidity and mortality. The observed differences between the various studies are mainly due to the used exposure-response function, the studied population, background emissions, and natural emission from the Sahara Desert that characterize the region. On the other hand, climate studies have focused primarily on the impact of heat waves, vector-borne disease, and mental disorders. More than half of these studies have been on leishmaniasis disease. The review revealed unbalanced and insufficient research on health impacts from air pollution episodes and climate extremes across the region.
Collapse
Affiliation(s)
- Sekmoudi Imane
- Process and Environment Engineering Laboratory, Faculty of Sciences and Technologies, Mohammedia. Hassan II University, Casablanca, Morocco
| | - Bouakline Oumaima
- SETIME Laboratory, Department of Physics, Faculty of Science, Ibn Tofail University, B.P 133, Kenitra, 14000 Morocco
| | - Khomsi Kenza
- General Directorate of Meteorology, Casablanca, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition and Health, Faculty of Medicine and Pharmacy, Hassan II University, Ain Chock, Casablanca, P.O. Box 5696, Morocco
| | - Idrissi Laila
- Process and Environment Engineering Laboratory, Faculty of Sciences and Technologies, Mohammedia. Hassan II University, Casablanca, Morocco
| | - El merabet Youssef
- SETIME Laboratory, Department of Physics, Faculty of Science, Ibn Tofail University, B.P 133, Kenitra, 14000 Morocco
| | - Souhaili Zineb
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition and Health, Faculty of Medicine and Pharmacy, Hassan II University, Ain Chock, Casablanca, P.O. Box 5696, Morocco
| | - El jarmouni Mohamed
- National School of Applied Sciences, Water and Environmental Engineering Team, Applied Sciences Laboratory, Abdelmalek Essaadi University, B.P03, Ajdir, Al-Hoceima, Morocco
| |
Collapse
|
4
|
Identifying Potential Planting Sites for Three Non-Native Plants to Be Used for Soil Rehabilitation in the Tula Watershed. FORESTS 2022. [DOI: 10.3390/f13020270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Tula watershed in Mexico, located in a semiarid and sub-humid climate zone, is experiencing intensive population growth, the expansion of mining concessions for construction materials, and agricultural and urban development, resulting in the degradation of soils and vegetation and a greater demand on natural resources. The aims of this study were to evaluate the survival rates and identify potential habitats within the Tula watershed for planting three non-native forage species (Atriplex canescens, Cynodon dactylon, and Leucaena collinsii) using the Kaplan-Meier estimator and the MaxEnt model with the purpose of rehabilitating degraded soils via agroforestry systems. There were 19 edaphoclimatic variables used and the occurrences of three species, obtained from the GBIF, MEXU, and SNIB databases. The models generated with MaxEnt were very accurate (area under the curve [AUC] ≥ 0.7). The species Atriplex canescens and Cynodon dactylon showed areas of potential planting sites (>0.4) and high survival rates (80% and 92%, respectively). The species Leucaena collinsii presented areas with lower potential planting (<0.4) but registered the greater survival rate (100%). The results provide a solid basis to evaluate the survival rates of forage species within potential planting sites in the Tula watershed using agroforestry systems to rehabilitate degraded soils.
Collapse
|
5
|
Cuervo PF, Artigas P, Mas-Coma S, Bargues MD. West Nile virus in Spain: Forecasting the geographical distribution of risky areas with an ecological niche modelling approach. Transbound Emerg Dis 2021; 69:e1113-e1129. [PMID: 34812589 DOI: 10.1111/tbed.14398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
West Nile virus (WNV), a well-known emerging vector-borne arbovirus with a zoonotic life cycle, represents a threat to both public and animal health. Transmitted by ornithophilic mosquitoes, its transmission is difficult to predict and even more difficult to prevent. The massive and unprecedented number of human cases and equid outbreaks in Spain during 2020 interpellates for new approaches. For the first time, we present an integrate analysis from a niche perspective to provide an insight to the situation of West Nile disease (WND) in Spain. Our modelling approach benefits from the combined use of global occurrence records of outbreaks of WND in equids and of its two alleged main vectors in Spain, Culex pipiens and Cx. perexiguus. Maps of the climatic suitability for the presence of the two vectors species and for the circulation of WNV are provided. The main outcome of our study is a map delineating the areas under certain climatic risk of transmission. Our analyses indicate that the climatic risk of transmission of WND is medium in areas nearby the south Atlantic coastal area of the Cadiz Gulf and the Mediterranean coast, and high in southwestern Spain. The higher risk of transmission in the basins of the rivers Guadiana and Guadalquivir cannot be attributed exclusively to the local abundance of Cx. pipiens, but could be ascribed to the presence and abundance of Cx. perexiguus. Furthermore, this integrated analysis suggests that the WNV presents an ecological niche of its own, not fully overlapping the ones of its hosts or vector, and thus requiring particular environmental conditions to succeed in its infection cycle.
Collapse
Affiliation(s)
- Pablo Fernando Cuervo
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain.,Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET - Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Patricio Artigas
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Santiago Mas-Coma
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - María Dolores Bargues
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|