1
|
Marquereau L, Yamada H, Damiens D, Leclercq A, Derepas B, Brengues C, Dain BW, Lejarre Q, Proudhon M, Bouyer J, Gouagna LC. Upscaling irradiation protocols of Aedes albopictus pupae within an SIT program in Reunion Island. Sci Rep 2024; 14:12117. [PMID: 38802536 PMCID: PMC11130285 DOI: 10.1038/s41598-024-62642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
The implementation of the sterile insect technique against Aedes albopictus relies on many parameters, in particular on the success of the sterilization of males to be released into the target area in overflooding numbers to mate with wild females. Achieving consistent sterility levels requires efficient and standardized irradiation protocols. Here, we assessed the effects of exposure environment, density of pupae, irradiation dose, quantity of water and location in the canister on the induced sterility of male pupae. We found that the irradiation of 2000 pupae in 130 ml of water and with a dose of 40 Gy was the best combination of factors to reliably sterilize male pupae with the specific irradiator used in our control program, allowing the sterilization of 14000 pupae per exposure cycle. The location in the canister had no effect on induced sterility. The results reported here allowed the standardization and optimization of irradiation protocols for a Sterile Insect Technique program to control Ae. albopictus on Reunion Island, which required the production of more than 300,000 sterile males per week.
Collapse
Affiliation(s)
- Lucie Marquereau
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France.
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400, Vienna, Austria
| | - David Damiens
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Antonin Leclercq
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Brice Derepas
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Cécile Brengues
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Brice William Dain
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Quentin Lejarre
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Mickael Proudhon
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400, Vienna, Austria
- ASTRE, CIRAD, INRAE, University of Montpellier, 34398, Montpellier, France
- ASTRE, CIRAD, INRAE, University of Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Louis Clément Gouagna
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France.
- UMR Mivegec, IRD-Délégation Régionale Occitanie, 34394, Montpellier, France.
| |
Collapse
|
2
|
Balestrino F, Bimbilé Somda NS, Samuel M, Meletiou S, Bueno O, Wallner T, Yamada H, Mamai W, Vreysen MJB, Bouyer J. Mass irradiation of adult Aedes mosquitoes using a coolable 3D printed canister. Sci Rep 2024; 14:4358. [PMID: 38388700 PMCID: PMC10884024 DOI: 10.1038/s41598-024-55036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
In the last decade, the use of the sterile insect technique (SIT) to suppress mosquito vectors have rapidly expanded in many countries facing the complexities of scaling up production and procedures to sustain large-scale operational programs. While many solutions have been proposed to improve mass production, sex separation and field release procedures, relatively little attention has been devoted to effective mass sterilization of mosquitoes. Since irradiation of pupae en masse has proven difficult to standardise with several variables affecting dose response uniformity, the manipulation of adult mosquitoes appears to be the most promising method to achieve effective and reliable sterilization of large quantities of mosquitoes. A 3D-printed phase change material based coolable canister was developed which can compact, immobilize and hold around 100,000 adult mosquitoes during mass radio sterilization procedures. The mass irradiation and compaction treatments affected the survival and the flight ability of Aedes albopictus and Aedes aegypti adult males but the use of the proposed irradiation canister under chilled conditions (6.7-11.3 °C) significantly improved their quality and performance. The use of this cooled canister will facilitate adult mass irradiation procedures in self-contained irradiators in operational mosquito SIT programmes.
Collapse
Affiliation(s)
- F Balestrino
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria.
| | - N S Bimbilé Somda
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
- Unité de Formation et de Recherche en Science et Technologie (UFR/ST), Université Norbert ZONGO (UNZ), BP 376, Koudougou, Burkina Faso
| | - M Samuel
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
- National Institute for Communicable Diseases, Centre for Emerging Zoonotic and Parasitic Diseases, Johannesburg, 2131, South Africa
| | - S Meletiou
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
- Department of Chemical Engineering, Cyprus University of Technology, 3020, Limassol, Cyprus
| | - O Bueno
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
| | - T Wallner
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
| | - H Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
| | - W Mamai
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
| | - M J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
| | - J Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, 1400, Vienna, Austria
- UMR ASTRE, CIRAD, 34398, Montpellier, France
| |
Collapse
|
3
|
Kaboré BA, Taqi SD, Mkinga A, Morales Zambrana AE, Mach RL, Vreysen MJB, de Beer CJ. Radiation dose fractionation and its potential hormetic effects on male Glossina palpalis gambiensis (Diptera: Glossinidae): a comparative study of reproductive and flight quality parameters. Parasite 2024; 31:4. [PMID: 38334684 PMCID: PMC10854482 DOI: 10.1051/parasite/2024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/03/2023] [Indexed: 02/10/2024] Open
Abstract
One of the most critical factors for implementing the sterile insect technique for the management of tsetse is the production of large quantities of highly competitive sterile males in the field. Several factors may influence the biological quality of sterile males, but optimizing the irradiation protocols to limit unwanted somatic cell damage could improve male performance. This study evaluated the effect of fractionation of gamma radiation doses on the fertility and flight quality of male Glossina palpalis gambiensis. Induced sterility was assessed by mating irradiated males with virgin fertile females. Flight quality was assessed using a standard protocol. The male flies were irradiated as pupae on day 23-27 post larviposition with 110 Gy, either in a single dose or in fractionations of 10 + 100 Gy and 50 + 60 Gy separated by 1-, 2- and 3-day intervals or 55 + 55 Gy separated by 4-, 8-, and 24-hour intervals. All treatments induced more than 90% sterility in females mated with irradiated males, as compared with untreated males. No significant differences were found in emergence rate or flight propensity between fractionated and single radiation doses, nor between the types of fractionations. Overall, the 50(D0) + 60(D1) Gy dose showed slightly higher induced sterility, flight propensity, and survival of males under feeding regime. Dose fractionation resulted in only small improvements with respect to flight propensity and survival, and this should be traded off with the required increase in labor that dose fractionation entails, especially in larger control programs.
Collapse
Affiliation(s)
- Bénéwendé Aristide Kaboré
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Gumpendorfer Straße 1a 1060 Vienna Austria
- Insectarium de Bobo-Dioulasso-Campagne d’Eradication de la mouche Tsétsé et de la Trypanosomose Bobo-Dioulasso BP 1087 Burkina Faso
| | - Syeda Dua Taqi
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
| | - Athumani Mkinga
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
- Vector and Vector-Borne Diseases Institute, Tanzania Veterinary Laboratory Agency 1026 Tanga Tanzania
| | - Anibal E Morales Zambrana
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Gumpendorfer Straße 1a 1060 Vienna Austria
| | - Marc JB Vreysen
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
| | - Chantel J de Beer
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
| |
Collapse
|
4
|
Zhang H, Trueman E, Hou X, Chew DX, Deng L, Liew J, Chia T, Xi Z, Tan CH, Cai Y. Different mechanisms of X-ray irradiation-induced male and female sterility in Aedes aegypti. BMC Biol 2023; 21:274. [PMID: 38012718 PMCID: PMC10683188 DOI: 10.1186/s12915-023-01757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Aedes aegypti (Ae. aegypti) is the major vector that transmits many diseases including dengue, Zika, and filariasis in tropical and subtropical regions. Due to the growing resistance to chemical-based insecticides, biological control methods have become an emerging direction to control mosquito populations. The sterile insect technique (SIT) deploys high doses of ionizing radiation to sterilize male mosquitoes before the release. The Wolbachia-based population suppression method of the incompatible insect technique (IIT) involves the release of Wolbachia-infected males to sterilize uninfected field females. Due to the lack of perfect sex separation tools, a low percentage of female contamination is detected in the male population. To prevent the unintentional release of these Wolbachia-infected females which might result in population replacement, a low dose of X-ray irradiation is deployed to sterilize any female escapees. However, it remains unclear whether these irradiation-induced male and female sterilizations share common mechanisms. RESULTS In this work, we set out to define the minimum dose of X-ray radiation required for complete female sterilization in Ae. aegypti (NEA-EHI strain). Further results showed that this minimum dose of X-ray irradiation for female sterilization significantly reduced male fertility. Similar results have been reported previously in several operational trials. By addressing the underlying causes of the sterility, our results showed that male sterility is likely due to chromosomal damage in the germ cells induced by irradiation. In contrast, female sterility appears to differ and is likely initiated by the elimination of the somatic supporting cells, which results in the blockage of the ovariole maturation. Building upon these findings, we identified the minimum dose of X-ray irradiation on the Wolbachia-infected NEA-EHI (wAlbB-SG) strain, which is currently being used in the IIT-SIT field trial. Compared to the uninfected parental strain, a lower irradiation dose could fully sterilize wAlbB-SG females. This suggests that Wolbachia-carrying mosquitoes are more sensitive to irradiation, consistent with a previous report showing that a lower irradiation dose fully sterilized Wolbachia-infected Ae. aegypti females (Brazil and Mexican strains) compared to those uninfected controls. CONCLUSIONS Our findings thus reveal the distinct mechanisms of ionizing X-ray irradiation-induced male or female sterility in Ae. aegypti mosquitoes, which may help the design of X-ray irradiation-based vector control methods.
Collapse
Affiliation(s)
- Heng Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Present address: Institute of Infectious Disease, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Emma Trueman
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - De Xian Chew
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
| | - Lu Deng
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Jonathan Liew
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Tania Chia
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Cheong Huat Tan
- Environmental Health Institute, National Environment Agency, Singapore, 138667, Singapore.
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|