1
|
Bordeaux ZA, Reddy SV, Choi J, Braun G, McKeel J, Lu W, Yossef SM, Ma EZ, West CE, Kwatra SG, Kwatra MM. Transcriptomic and proteomic analysis of tumor suppressive effects of GZ17-6.02 against mycosis fungoides. Sci Rep 2024; 14:1955. [PMID: 38263212 PMCID: PMC10805783 DOI: 10.1038/s41598-024-52544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). Despite having a wide variety of therapeutic agents available for the treatment of MF, patients often suffer from a significant decrease in quality of life and rarely achieve long-term remission or complete cure, highlighting a need to develop novel therapeutic agents for this disease. The present study was undertaken to evaluate the efficacy of a novel anti-tumor agent, GZ17-6.02, which is composed of curcumin, harmine, and isovanillin, against MF in vitro and in murine models. Treatment of HH and MyLa cells with GZ17-6.02 inhibited the growth of both cell lines with IC50 ± standard errors for growth inhibition of 14.37 ± 1.19 µg/mL and 14.56 ± 1.35 µg/mL, respectively, and increased the percentage of cells in late apoptosis (p = .0304 for HH; p = .0301 for MyLa). Transcriptomic and proteomic analyses revealed that GZ17-6.02 suppressed several pathways, including tumor necrosis factor (TNF)-ɑ signaling via nuclear factor (NF)-kB, mammalian target of rapamycin complex (mTORC)1, and Pi3K/Akt/mTOR signaling. In a subcutaneous tumor model, GZ17-6.02 decreased tumor volume (p = .002) and weight (p = .009) compared to control conditions. Proteomic analysis of tumor samples showed that GZ17-6.02 suppressed the expression of several proteins that may promote CTCL growth, including mitogen-activated protein kinase (MAPK)1, MAPK3, Growth factor receptor bound protein (GRB)2, and Mediator of RAP80 interactions and targeting subunit of 40 kDa (MERIT)40.
Collapse
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Sriya V Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Jaimie McKeel
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Selina M Yossef
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Emily Z Ma
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Cameron E West
- Genzada Pharmaceuticals, Hutchinson, USA
- US Dermatology Partners, Wichita, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
2
|
Seçme M, Dodurga Y, Demirkan NÇ, Kaçar N, Günel NS, Açıkbaş İ. Determination of T-cell clonality and expression profiles of Toll-like receptors signaling pathway genes and related miRNAs in patients with mycosis fungoides. Gene 2024; 891:147825. [PMID: 37748629 DOI: 10.1016/j.gene.2023.147825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) encompass a group of diseases characterized by the presence of malignant clonal CD4+ T lymphocytes in the skin. Mycosis fungoides (MF) is the most prevalent form of CTCL, accounting for approximately 60 % of cutaneous T-cell lymphomas and 50 % of all primary cutaneous lymphomas. Despite ongoing research, the precise pathogenesis of MF remains incompletely understood. Toll-like receptors (TLRs) have the ability to specifically recognize ligands, subsequently induce the expression of diverse genes and activate innate immunity within the cell. Furthermore, miRNAs play a crucial role in regulating various aspects of immune cell function. The aim of our study was to explore the potential roles of TLRs and the genes implicated in their signal transduction, along with the expression status of miRNAs in the mechanisms underlying MF. Additionally, we assessed the clonal status and compared it with clinicopathological data using a T-cell clonality assay. To determine the expression status of TLR pathway genes and miRNAs, we conducted RT-PCR analysis on 52 MF samples and 50 control paraffin block materials. Pathway analysis were conducted using the KEGG database. T-cell receptor (TCR) gamma clonality changes were evaluated. Results from the study revealed increased expressions of TLR-1, -4, -8, IRF7, TRAF3, MEK1, MEK2, Elk1, NFkB, hsa-miR-21-5p, and hsa-miR-155-5p, as well as decreased expressions of hsa-miR-130a-3p, hsa-miR-210-3p, and hsa-let-7e-5p in the MF group. TCR gamma clonal change analysis demonstrated that 55.5 % of the analysed DNAs exhibited monoclonal and biallelic patterns, while 45.5 % displayed polyclonality. These findings collectively suggest the potential influence and therapeutic possibilities of the TLR signalling pathway in the molecular pathogenesis of MF.
Collapse
Affiliation(s)
- Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey.
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Neşe Çallı Demirkan
- Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Nida Kaçar
- Department of Dermatology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Nur Selvi Günel
- Department of Medical Biology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - İbrahim Açıkbaş
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
3
|
Liu F, Gao Y, Xu B, Xiong S, Yi S, Sun J, Chen Z, Liu X, Li Y, Lin Y, Wen Y, Qin Y, Yang S, Li H, Tejasvi T, Tsoi L, Tu P, Ren X, Wang Y. PEG10 amplification at 7q21.3 potentiates large-cell transformation in cutaneous T-cell lymphoma. Blood 2022; 139:554-571. [PMID: 34582557 PMCID: PMC8893588 DOI: 10.1182/blood.2021012091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/07/2021] [Indexed: 01/29/2023] Open
Abstract
Mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma, undergo large-cell transformation (LCT) in the late stage, manifesting aggressive behavior, resistance to treatments, and poor prognosis, but the mechanisms involved remain unclear. To identify the molecular driver of LCT, we collected tumor samples from 133 MF patients and performed whole-transcriptome sequencing on 49 advanced-stage MF patients, followed by integrated copy number inference and genomic hybridization. Tumors with LCT showed unique transcriptional programs and enriched expressions of genes at chr7q. Paternally expressed gene 10 (PEG10), an imprinted gene at 7q21.3, was ectopically expressed in malignant T cells from LCT, driven by 7q21.3 amplification. Mechanistically, aberrant PEG10 expression increased cell size, promoted cell proliferation, and conferred treatment resistance by a PEG10/KLF2/NF-κB axis in in vitro and in vivo models. Pharmacologically targeting PEG10 reversed the phenotypes of proliferation and treatment resistance in LCT. Our findings reveal new molecular mechanisms underlying LCT and suggest that PEG10 inhibition may serve as a promising therapeutic approach in late-stage aggressive T-cell lymphoma.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/genetics
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- DNA-Binding Proteins/genetics
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Genomic Imprinting
- Humans
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Mice, Inbred NOD
- Mice, SCID
- Mycosis Fungoides/genetics
- Mycosis Fungoides/pathology
- RNA-Binding Proteins/genetics
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Mice
Collapse
Affiliation(s)
- Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Bufang Xu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Shan Xiong
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Shengguo Yi
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Zhuojing Chen
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xiangjun Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yingyi Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yuchieh Lin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yujie Wen
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Yao Qin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Hang Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, MI; and
| | - Lam Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI; and
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| | - Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100034, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing 100034, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
| |
Collapse
|
4
|
Aladily TN, Abushunar T, Alhesa A, Alrawi R, Almaani N, Abdaljaleel M. Immunohistochemical Expression Patterns of CD45RO, p105/p50, JAK3, TOX, and IL-17 in Early-Stage Mycosis Fungoides. Diagnostics (Basel) 2022; 12:diagnostics12010220. [PMID: 35054387 PMCID: PMC8774984 DOI: 10.3390/diagnostics12010220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
The morphologic changes in early-stage mycosis fungoides (MF) might overlap with benign inflammatory dermatitis (BID). Previous studies have described altered expression patterns of several proteins in MF, but their diagnostic significance is uncertain. This study aims at examining the frequency of expression of CD45RO, NFkB-p105/p50, JAK3, TOX, and IL-17 proteins by immunohistochemistry. The cohorts included 21 patients of early-stage MF and 19 with benign BID as a control group. CD45RO was positive in all patients of MF and BID. NFkB-p105/p50 showed normal cytoplasmic staining, indicating an inactive status in all patients of both groups. JAK3 was positive in 3 (14%) MF and in 17 (89%) BID patients (p = 0.003). TOX was expressed in 19 (90%) and 13 (68%) patients of MF and BID, respectively (p = 0.120). IL-17 was detected in 13 (62%) MF and in 7 (37%) BID patients (p = 0.056). Co-expression of TOX and IL-17 was seen in 11 (52%) MF patients but in only 3 (16%) BID patients, which was statistically significant (p = 0.021). We conclude that a double expression of TOX and IL-17 may support the diagnosis of MF in the right clinicopathologic setting, while none of the immunohistochemical stains alone provided a significant discrimination between MF and BID.
Collapse
Affiliation(s)
- Tariq N. Aladily
- Department of Pathology, The University of Jordan, Amman 11942, Jordan; (T.A.); (A.A.); (M.A.)
- Correspondence:
| | - Tasnim Abushunar
- Department of Pathology, The University of Jordan, Amman 11942, Jordan; (T.A.); (A.A.); (M.A.)
| | - Ahmad Alhesa
- Department of Pathology, The University of Jordan, Amman 11942, Jordan; (T.A.); (A.A.); (M.A.)
| | - Raneen Alrawi
- Department of Dermatology, The University of Jordan, Amman 11942, Jordan; (R.A.); (N.A.)
| | - Noor Almaani
- Department of Dermatology, The University of Jordan, Amman 11942, Jordan; (R.A.); (N.A.)
| | - Maram Abdaljaleel
- Department of Pathology, The University of Jordan, Amman 11942, Jordan; (T.A.); (A.A.); (M.A.)
| |
Collapse
|
5
|
Galliano I, Daprà V, Ponti R, Alliaudi C, Fierro MT, Quaglino P, Bergallo M. CD27 mRNA expression in mycosis fungoides. Ital J Dermatol Venerol 2021; 157:275-280. [PMID: 34282858 DOI: 10.23736/s2784-8671.21.06953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The etiopathogenesis of MF remains obscure. CD27 is a member of the tumor necrosis factor receptor superfamily (TNFRS) that regulates lymphocyte function4. Expression of CD27 protein and mRNA has been reported in B-cell lymphomas5 and adult T-cell leukemia/lymphoma6. In this study, we examined the expression of CD27 in the skin of MF patients by real time PCR. The amount of CD27 was measured in MF patients and healthy controls. METHODS A total of 98 skin biopsies were analyzed: 12 obtained from healthy donors and 86 obtained Cryostatic sections OCT-embedded affected by MF. Relative quantification of mRNA CD27 expression was achieved by means of TaqMan amplification and normalization to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). RESULTS Housekeeping gene was detectable in all Skin samples and there isn't difference between healthy control and MF p value 0.1564. CD27 mRNA sequences were found in 3 of 12 (25%) of skin obtained from healthy donors and in 59 of 86 (68%) of skin obtained from Cryostatic sections OCT-embedded affected by MF. The chi-square statistic with Yates correction is 6.8413 and the p-value is 0.0089. When we compared the CD27 expression in MF and controls the RQ analysis show a value of 9.12±14.13. A RQ of 9.12 means that this gene is 9.12 times more expressed in MF skin samples then in the healthy skin samples. No difference were observed in the MF clustered by stages. CONCLUSIONS Our findings indicates that CD27 can be used as diagnostic/prognostic markers, and whether anti-CD27 antibodies can be used in therapy.
Collapse
Affiliation(s)
- Ilaria Galliano
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Valentina Daprà
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Renata Ponti
- Dermatology Section, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Carla Alliaudi
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
| | - Maria T Fierro
- Dermatology Section, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Dermatology Section, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimiliano Bergallo
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children's Hospital, University of Turin, Turin, Italy -
| |
Collapse
|
6
|
Pavlidis A, Piperi C, Papadavid E. Novel therapeutic approaches for cutaneous T cell lymphomas. Expert Rev Clin Immunol 2021; 17:629-641. [PMID: 33890833 DOI: 10.1080/1744666x.2021.1919085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Cutaneous T-cell lymphoma (CTCL) is a rare non-Hodgkin's lymphoma, characterized by malignant T cells infiltrating the skin. CTCL exhibits vast heterogeneity which complicates diagnosis and therapeutic strategies. Current CTCL treatment includes skin-directed therapies (such as topical corticosteroid, topical mechlorethamine, topical bexarotene, ultraviolet phototherapy and localized radiotherapy), total skin electron beam therapy and systemic therapies. Elucidation of molecular and signaling pathways underlying CTCL pathogenesis leads to identification of innovative and personalized treatment schemes.Areas covered: The authors reviewed the molecular and immunological aspects of CTCL with special focus on Mycosis Fungoides (MF), Sézary Syndrome (SS) and associated systemic treatment. A literature search was conducted in PubMed and Web of Science for peer-reviewed articles published until November 2020. Novel treatment approaches including retinoids, targeted therapies, immune checkpoint and JAK/STAT inhibitors, histones deacetylase (HDAC) and mTOR inhibitors as well as proteasome inhibitors, are discussed as potential therapeutic tools for the treatment of CTCL.Expert opinion: Novel therapeutic agents exhibit potential beneficial effects in CTCL patients of high need for therapy such as refractory early stage cutaneous and advanced stage disease. Therapeutic schemes employing a combination of novel agents with current treatment options may prove valuable for the future management of CTCL patients.
Collapse
Affiliation(s)
- Antreas Pavlidis
- 2nd Department of Dermatology and Venereal Diseases, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereal Diseases, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Durgin JS, Weiner DM, Wysocka M, Rook AH. The immunopathogenesis and immunotherapy of cutaneous T cell lymphoma: Pathways and targets for immune restoration and tumor eradication. J Am Acad Dermatol 2021; 84:587-595. [PMID: 33352267 PMCID: PMC7897252 DOI: 10.1016/j.jaad.2020.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Cutaneous T cell lymphomas (CTCLs) are malignancies of skin-trafficking T cells. Patients with advanced CTCL manifest immune dysfunction that predisposes to infection and suppresses the antitumor immune response. Therapies that stimulate immunity have produced superior progression-free survival compared with conventional chemotherapy, reinforcing the importance of addressing the immune deficient state in the care of patients with CTCL. Recent research has better defined the pathogenesis of these immune deficits, explaining the mechanisms of disease progression and revealing potential therapeutic targets. The features of the malignant cell in mycosis fungoides and Sézary syndrome are now significantly better understood, including the T helper 2 cell phenotype, regulatory T cell cytokine production, immune checkpoint molecule expression, chemokine receptors, and interactions with the microenvironment. The updated model of CTCL immunopathogenesis provides understanding into clinical progression and therapeutic response.
Collapse
Affiliation(s)
- Joseph S Durgin
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Weiner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Reneau JC, Wilcox RA. Novel therapies targeting cutaneous T cell lymphomas and their microenvironment. Semin Hematol 2021; 58:103-113. [PMID: 33906720 DOI: 10.1053/j.seminhematol.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) are rare non-Hodgkin lymphomas with a generally indolent course managed with topical, skin-directed therapies. A small subset, however, will progress to advanced stage disease necessitating systemic therapy for disease control. Currently approved therapies have low response rates and generally short durations of response. Novel therapies, therefore, are urgently needed to address this unmet need. In this review, the mechanisms of CTCL pathogenesis and progression, including the role of the tumor microenvironment and molecular alterations, are summarized. Based on these biologic insights, novel therapies currently under investigation and those with a strong preclinical biologic rationale including T cell and macrophage checkpoint inhibitors, epigenetic regulators, targeted antibodies, tyrosine kinase inhibitors, and apoptosis modulating therapies are discussed.
Collapse
Affiliation(s)
- John C Reneau
- The Ohio State University, Division of Hematology, Columbus, OH.
| | - Ryan A Wilcox
- Division of Hematology/Oncology, University of Michigan Cancer Center, Ann Arbor, MI
| |
Collapse
|
9
|
Moon CS, Reglero C, Cortes JR, Quinn SA, Alvarez S, Zhao J, Lin WHW, Cooke AJ, Abate F, Soderquist CR, Fiñana C, Inghirami G, Campo E, Bhagat G, Rabadan R, Palomero T, Ferrando AA. FYN-TRAF3IP2 induces NF-κB signaling-driven peripheral T cell lymphoma. NATURE CANCER 2021; 2:98-113. [PMID: 33928261 PMCID: PMC8081346 DOI: 10.1038/s43018-020-00161-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Angioimmunoblastic T cell lymphoma (AITL) and peripheral T cell lymphoma not-otherwise-specified (PTCL, NOS) have poor prognosis and lack driver actionable targets for directed therapies in most cases. Here we identify FYN-TRAF3IP2 as a recurrent oncogenic gene fusion in AITL and PTCL, NOS tumors. Mechanistically, we show that FYN-TRAF3IP2 leads to aberrant NF-κB signaling downstream of T cell receptor activation. Consistent with a driver oncogenic role, FYN-TRAF3IP2 expression in hematopoietic progenitors induces NF-κB-driven T cell transformation in mice and cooperates with loss of the Tet2 tumor suppressor in PTCL development. Moreover, abrogation of NF-κB signaling in FYN-TRAF3IP2-induced tumors with IκB kinase inhibitors delivers strong anti-lymphoma effects in vitro and in vivo. These results demonstrate an oncogenic and pharmacologically targetable role for FYN-TRAF3IP2 in PTCLs and call for the clinical testing of anti-NF-κB targeted therapies in these diseases.
Collapse
Affiliation(s)
- Christine S Moon
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Silvia Alvarez
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Wen-Hsuan W Lin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Anisha J Cooke
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Francesco Abate
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Craig R Soderquist
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Claudia Fiñana
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Elias Campo
- Department of Pathology, Hospital Clinic of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Single-Cell Heterogeneity of Cutaneous T-Cell Lymphomas Revealed Using RNA-Seq Technologies. Cancers (Basel) 2020; 12:cancers12082129. [PMID: 32751918 PMCID: PMC7464763 DOI: 10.3390/cancers12082129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent a large, heterogeneous group of non-Hodgkin lymphomas that primarily affect the skin. Among multiple CTCL variants, the most prevalent types are mycosis fungoides (MF) and Sézary syndrome (SS). In the past decade, the molecular genetics of CTCL have been the target of intense study, increasing the knowledge of CTCL genomic alterations, discovering novel biomarkers, and potential targets for patient-specific therapy. However, the detailed pathogenesis of CTCL development still needs to be discovered. This review aims to summarize the novel insights into molecular heterogeneity of malignant cells using high-throughput technologies, such as RNA sequencing and single-cell RNA sequencing, which might be useful to identify tumour-specific molecular signatures and, therefore, offer guidance for therapy, diagnosis, and prognosis of CTCL.
Collapse
|
11
|
Mazuz M, Tiroler A, Moyal L, Hodak E, Nadarajan S, Vinayaka AC, Gorovitz-Haris B, Lubin I, Drori A, Drori G, Cauwenberghe OV, Faigenboim A, Namdar D, Amitay-Laish I, Koltai H. Synergistic cytotoxic activity of cannabinoids from cannabis sativa against cutaneous T-cell lymphoma (CTCL) in-vitro and ex-vivo. Oncotarget 2020; 11:1141-1156. [PMID: 32284791 PMCID: PMC7138167 DOI: 10.18632/oncotarget.27528] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/03/2020] [Indexed: 12/30/2022] Open
Abstract
Cannabis sativa produces hundreds of phytocannabinoids and terpenes. Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), characterized by patches, plaques and tumors. Sézary is a leukemic stage of CTCL presenting with erythroderma and the presence of neoplastic Sézary T-cells in peripheral blood. This study aimed to identify active compounds from whole cannabis extracts and their synergistic mixtures, and to assess respective cytotoxic activity against CTCL cells. Ethanol extracts of C. sativa were analyzed by high-performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Cytotoxic activity was determined using the XTT assay on My-La and HuT-78 cell lines as well as peripheral blood lymphocytes from Sézary patients (SPBL). Annexin V assay and fluorescence-activated cell sorting (FACS) were used to determine apoptosis and cell cycle. RNA sequencing and quantitative PCR were used to determine gene expression. Active cannabis compounds presenting high cytotoxic activity on My-La and HuT-78 cell lines were identified in crude extract fractions designated S4 and S5, and their synergistic mixture was specified. This mixture induced cell cycle arrest and cell apoptosis; a relatively selective apoptosis was also recorded on the malignant CD4+CD26- SPBL cells. Significant cytotoxic activity of the corresponding mixture of pure phytocannabinoids further verified genuine interaction between S4 and S5. The gene expression profile was distinct in My-La and HuT-78 cells treated with the S4 and S5 synergistic mixture. We suggest that specifying formulations of synergistic active cannabis compounds and unraveling their modes of action may lead to new cannabis-based therapies.
Collapse
Affiliation(s)
- Moran Mazuz
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,These authors equally contributed as the first author
| | - Amir Tiroler
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,These authors equally contributed as the first author
| | - Lilach Moyal
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Stalin Nadarajan
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | | | - Batia Gorovitz-Haris
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Lubin
- Core Facility, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Drori
- MedC Biopharma Corporation, Ontario, Canada
| | - Guy Drori
- MedC Biopharma Corporation, Ontario, Canada
| | | | - Adi Faigenboim
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Dvora Namdar
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel
| | - Iris Amitay-Laish
- Division of Dermatology, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,These authors equally contributed as the last author
| | - Hinanit Koltai
- Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion, Israel.,These authors equally contributed as the last author
| |
Collapse
|
12
|
Walia R, Yeung CCS. An Update on Molecular Biology of Cutaneous T Cell Lymphoma. Front Oncol 2020; 9:1558. [PMID: 32039026 PMCID: PMC6987372 DOI: 10.3389/fonc.2019.01558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cutaneous T cell lymphomas represent a heterogenous group of lymphoproliferative disorders defined by clonal proliferation of T cells present in the skin. The latest WHO classification in 2016 and WHO-EORTC classification in 2018 has updated the classification of these entities based on the molecular profile. Research in the field of molecular genetics of CTCL has allowed a better understanding of the biology of these tumors and has helped to identify potential targets for therapy that can be tailored to individual patients. In this review, we discuss the latest developments in the molecular profile of CTCLs including biomarkers for diagnosis, prognosis, and potential therapeutic targets. We have also touched upon the utility of various molecular diagnostic modalities. For the purpose of this review, we researched papers in PubMed indexed journals in English literature published in the past 20 years using keywords CTCL, mycosis fungoides, molecular profile, molecular diagnosis, whole genome profile, genomic landscape, TCR clonality.
Collapse
Affiliation(s)
- Ritika Walia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Cecilia C S Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Wu J, Wood GS. Analysis of the Effect of Gentian Violet on Apoptosis and Proliferation in Cutaneous T-Cell Lymphoma in an In Vitro Study. JAMA Dermatol 2019; 154:1191-1198. [PMID: 30167641 DOI: 10.1001/jamadermatol.2018.2756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Importance Triggering the extrinsic apoptotic pathway is an effective way to kill cutaneous T-cell lymphoma (CTCL) cells in vitro and ex vivo. Objective To compare small molecules that induce extrinsic apoptosis in CTCL to identify and analyze compounds that induce high levels of tumor cell death and block tumor cell growth. Design, Setting, and Participants From November 5, 2014, to January 30, 2018, this study performed high-throughput small molecule screening of 1710 compounds followed by detailed analysis of the ability of gentian violet (GV) to promote apoptosis and inhibit proliferation of CTCL cells. Exposures In vitro and ex vivo analyses using enzyme-linked immunosorbent assays, flow cytometry, and immunoblotting. Main Outcomes and Measures Apoptosis, cleaved caspases, extrinsic apoptotic death receptors and ligands, cell proliferation, nuclear factor-κB expression, and other factors. Results This study used high-throughput screening to detect cleaved caspase 8 induced in CTCL cells by 1710 unique compounds. The nonprescription, topical antimicrobial remedy GV induced more total apoptosis than did nitrogen mustard (mechlorethamine). Furthermore, GV induced 4 to 6 times greater apoptosis in CTCL lines than in normal keratinocytes, suggesting a favorable topical toxicity profile. In addition to increasing caspase 8, GV also upregulated death receptors 4 and 5, tumor necrosis factor (TNF)-related apoptosis-inducing ligand, and Fas ligand but not the Fas receptor, TNF receptor, or TNF-α ligand. These results are consistent with induction of extrinsic apoptosis via the Fas and TNF-related apoptosis-inducing ligand pathways. Increased phosphorylation of phospholipase C-γ1, Ca2+ influx, and reactive oxygen species were also detected, indicating that the mechanism of Fas ligand upregulation involves key elements of the activation-induced cell death pathway. In ex vivo studies, 1-μmol/L GV induced up to 90% CTCL apoptosis in Sézary blood cells. In addition, GV reduced expression of antiapoptotic myeloid cell leukemia 1 and proproliferative nuclear factor-κB components and increased inhibitory κB levels. This finding was associated with cell cycle arrest and reduced CTCL tumor cell proliferation. Furthermore, the CTCL killing associated with GV was augmented when used in combination with methotrexate. Conclusions and Relevance This study found that GV attacked tumor viability and growth in CTCL. Although purple at neutral pH, GV can be rendered colorless by altering its pH. These preclinical findings may help to broaden knowledge of the antineoplastic features of GV and provide a rationale for clinical studies of its use as a novel, inexpensive, topical therapy for CTCL that is available worldwide.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Dermatology, University of Wisconsin, Madison.,Veterans Affairs Medical Center, Madison, Wisconsin
| | - Gary S Wood
- Department of Dermatology, University of Wisconsin, Madison.,Veterans Affairs Medical Center, Madison, Wisconsin
| |
Collapse
|
14
|
Chen B, Zheng Y, Zhu J, Liang Y. SHARPIN overexpression promotes TAK1 expression and activates JNKs and NF-κB pathway in Mycosis Fungoides. Exp Dermatol 2019; 28:1279-1288. [PMID: 31461795 DOI: 10.1111/exd.14026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Mycosis Fungoides (MF) is the most common subtype of cutaneous T-cell lymphomas (CTCL). Shank-associated RH domain-interacting protein (SHARPIN) participates in the initiation and development of multiple tumors. However, the clinical significance of SHARPIN in MF hasn't been investigated. The c-Jun N-terminal kinases (JNKs) pathway is a member of mitogen-activated protein kinases (MAPKs). Its dysregulation is observed in various tumors including CTCL, whereas the roles of JNKs pathway in MF remain largely unknown, the relationship between SHARPIN and JNKs pathway remains elusive. Herein, we showed that upregulated expression of SHARPIN was related to poor prognosis of MF patients. In vitro experiments found increased SHARPIN expression and activation of JNKs pathway in MF cell line MyLa2059. SHARPIN induced transforming growth factor β activated kinase-1 (TAK1) transcription, which is an upstream kinase of JNKs, NF-κB and p38 pathway, leading to activation of JNKs and NF-κB pathway. SHARPIN also promoted p38 signalling independent of TAK1 expression, by which overexpression of SHARPIN induced cell proliferation, inhibited apoptosis, enhanced migration and invasion of MyLa2059. Our work provided direct evidences for effects of SHARPIN on JNKs and NF-κB pathway, and the contributing roles of JNKs, NF-κB and p38 pathway regulated by SHARPIN in the development of MF.
Collapse
Affiliation(s)
- Biao Chen
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yan Zheng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingna Zhu
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yanhua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
15
|
Takahashi T, Yoshioka M, Uchinami H, Nakagawa Y, Otsuka N, Motoyama S, Yamamoto Y. Hepatic Stellate Cells Play a Functional Role in Exacerbating Ischemia-Reperfusion Injury in Rat Liver. Eur Surg Res 2019; 60:74-85. [PMID: 31132769 DOI: 10.1159/000499750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 03/20/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE The involvement of hepatic stellate cells (HSCs) with ischemia-reperfusion (I/R) injury in rat liver was examined using gliotoxin, which is known to induce HSC apoptosis. METHODS Male Sprague-Dawley rats were used. HSC was represented by a glial fibrillary acidic protein (GFAP)-positive cell. Liver ischemia was produced by cross-clamping the hepatoduodenal ligament. The degree of I/R injury was evaluated by a release of aminotransferases. Sinusoidal diameter and sinusoidal perfusion rates were examined using intravital fluorescence microscopy. RESULTS Gliotoxin significantly decreased the number of GFAP-positive cells 48 h after dosing (2.50 ± 0.19% [mean ± SD] in the nontreated group vs. 1.91 ± 0.46% in the gliotoxin-treated group). Liver damage was significantly suppressed by the pretreatment with gliotoxin. Sinusoidal diameters in zone 3 were wider in the gliotoxin group (10.25 ± 0.35 µm) than in the nontreated group (8.21 ± 0.50 µm). The sinusoidal perfusion rate was maintained as well in the gliotoxin group as in normal livers, even after I/R. CONCLUSIONS Pretreatment with gliotoxin significantly reduced the number of HSCs in the liver and further suppressed liver injury following I/R. It is strongly suggested that HSCs play a functional role in exacerbating the degree of I/R injury of the liver.
Collapse
Affiliation(s)
- Tomokazu Takahashi
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Masato Yoshioka
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan,
| | - Hiroshi Uchinami
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yasuhiko Nakagawa
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Naohiko Otsuka
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Satoru Motoyama
- Department of Comprehensive Cancer Control, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuzo Yamamoto
- Department of Gastroenterological Surgery, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
16
|
Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M, Jackson AL. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 2018; 183:428-444. [PMID: 30125933 DOI: 10.1111/bjh.15547] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
miR-155, a microRNA associated with poor prognosis in lymphoma and leukaemia, has been implicated in the progression of mycosis fungoides (MF), the most common form of cutaneous T-cell lymphoma (CTCL). In this study, we developed and tested cobomarsen (MRG-106), a locked nucleic acid-modified oligonucleotide inhibitor of miR-155. In MF and human lymphotropic virus type 1 (HTLV-1+) CTCL cell lines in vitro, inhibition of miR-155 with cobomarsen de-repressed direct miR-155 targets, decreased expression of multiple gene pathways associated with cell survival, reduced survival signalling, decreased cell proliferation and activated apoptosis. We identified a set of genes that are significantly regulated by cobomarsen, including direct and downstream targets of miR-155. Using clinical biopsies from MF patients, we demonstrated that expression of these pharmacodynamic biomarkers is dysregulated in MF and associated with miR-155 expression level and MF lesion severity. Further, we demonstrated that miR-155 simultaneously regulates multiple parallel survival pathways (including JAK/STAT, MAPK/ERK and PI3K/AKT) previously associated with the pathogenesis of MF, and that these survival pathways are inhibited by cobomarsen in vitro. A first-in-human phase 1 clinical trial of cobomarsen in patients with CTCL is currently underway, in which the panel of proposed biomarkers will be leveraged to assess pharmacodynamic response to cobomarsen therapy.
Collapse
Affiliation(s)
| | - Xuan Beatty
- miRagen Therapeutics, Inc., Boulder, CO, USA
| | | | | | - Michael Tetzlaff
- Section of Dermatopathology, Department of Pathology, Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
17
|
Manso R, Martínez-Magunacelaya N, Eraña-Tomás I, Monsalvez V, Rodríguez-Peralto JL, Ortiz-Romero PL, Santonja C, Cristóbal I, Piris MA, Rodríguez-Pinilla SM. Mycosis fungoides progression could be regulated by microRNAs. PLoS One 2018; 13:e0198477. [PMID: 29894486 PMCID: PMC5997347 DOI: 10.1371/journal.pone.0198477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Differentiating early mycosis fungoides (MF) from inflammatory dermatitis is a challenge. We compare the differential expression profile of early-stage MF samples and benign inflammatory dermatoses using microRNA (miRNA) arrays. 114 miRNAs were found to be dysregulated between these entities. The seven most differentially expressed miRNAs between these two conditions were further analyzed using RT-PCR in two series comprising 38 samples of early MFs and 18 samples of inflammatory dermatitis. A series of 51 paraffin-embedded samples belonging to paired stages of 16 MF patients was also analyzed. MiRNAs 26a, 222, 181a and 146a were differentially expressed between tumoral and inflammatory conditions. Two of these miRNAs (miRNA-181a and miRNA-146a) were significantly deregulated between early and advanced MF stages. Bioinformatic analysis showed FOXP3 expression to be regulated by these miRNAs. Immunohistochemistry revealed the level of FOXP3 expression to be lower in tumoral MFs than in plaque lesions in paraffin-embedded tissue. A functional study confirmed that both miRNAs diminished FOXP3 expression when overexpressed in CTCL cells. The data presented here suggest that the analysis of a restricted number of miRNAs (26a, 222, 181a and 146a) could be sufficient to differentiate tumoral from reactive conditions. Moreover, these miRNAs seem to be involved in MF progression.
Collapse
Affiliation(s)
- Rebeca Manso
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid, CIBERONC, Madrid, Spain
| | | | | | - Verónica Monsalvez
- Hospital Universitario 12 de Octubre, Dermatology Department, Madrid, Spain
| | | | | | - Carlos Santonja
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid, CIBERONC, Madrid, Spain
| | - Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Miguel A. Piris
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid, CIBERONC, Madrid, Spain
| | | |
Collapse
|
18
|
Boonstra PS, Avery P, Brown N, Hristov AC, Bailey NG, Kaminski MS, Phillips T, Devata S, Mayer T, Wilcox RA. A single center phase II study of ixazomib in patients with relapsed or refractory cutaneous or peripheral T-cell lymphomas. Am J Hematol 2017; 92:1287-1294. [PMID: 28842936 PMCID: PMC6116510 DOI: 10.1002/ajh.24895] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
The transcription factor GATA-3, highly expressed in many cutaneous T-cell lymphoma (CTCL) and peripheral T-cell lymphomas (PTCL), confers resistance to chemotherapy in a cell-autonomous manner. As GATA-3 is transcriptionally regulated by NF-κB, we sought to determine the extent to which proteasomal inhibition impairs NF-κB activation and GATA-3 expression and cell viability in malignant T cells. Proteasome inhibition, NF-κB activity, GATA-3 expression, and cell viability were examined in patient-derived cell lines and primary T-cell lymphoma specimens ex vivo treated with the oral proteasome inhibitor ixazomib. Significant reductions in cell viability, NF-κB activation, and GATA-3 expression were observed preclinically in ixazomib-treated cells. Therefore, an investigator-initiated, single-center, phase II study with this agent in patients with relapsed/refractory CTCL/PTCL was conducted. Concordant with our preclinical observations, a significant reduction in NF-κB activation and GATA-3 expression was observed in an exceptional responder following one month of treatment with ixazomib. While ixazomib had limited activity in this small and heterogeneous cohort of patients, inhibition of the NF-κB/GATA-3 axis in a single exceptional responder suggests that ixazomib may have utility in appropriately selected patients or in combination with other agents.
Collapse
Affiliation(s)
| | - Polk Avery
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | | | - Mark S. Kaminski
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Tycel Phillips
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Sumana Devata
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Tera Mayer
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
19
|
Mascolo M, Romano MF, Ilardi G, Romano S, Baldo A, Scalvenzi M, Argenziano G, Merolla F, Russo D, Varricchio S, Pagliuca F, Russo M, Ciancia G, De Rosa G, Staibano S. Expression of FK506-binding protein 51 (FKBP51) in Mycosis fungoides. J Eur Acad Dermatol Venereol 2017; 32:735-744. [PMID: 28977697 DOI: 10.1111/jdv.14614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mycosis fungoides (MF) is the major subtype of cutaneous T-cell lymphomas (CTCL). It usually has a prolonged indolent clinical course with a minority of cases acquiring a more aggressive biological profile and resistance to conventional therapies, partially attributed to the persistent activation of nuclear factor-kappa B (NF-κB) pathway. In the last decade, several papers suggested an important role for the FK506-binding protein 51 (FKBP51), an immunophilin initially cloned in lymphocytes, in the control of NF-κB pathway in different types of human malignancies. OBJECTIVES We aimed to investigate the possible value of FKBP51 expression as a new reliable marker of outcome in patients with MF. METHODS We assessed by immunohistochemistry (IHC) FKBP51 expression in 44 patients with MF, representative of different stages of the disease. Immunohistochemical results were subsequently confirmed at mRNA level with quantitative PCR (qPCR) in a subset of enrolled patients. In addition, IHC and qPCR served to study the expression of some NF-κB-target genes, including the tumour necrosis factor receptor-associated factor 2 (TRAF2). RESULTS Our results show that FKBP51 was expressed in all evaluated cases, with the highest level of expression characterizing MFs with the worst prognosis. Moreover, a significant correlation subsisted between FKBP51 and TRAF2 IHC expression scores. CONCLUSIONS We hypothesize a role for FKBP51 as a prognostic marker for MF and suggest an involvement of this immunophilin in deregulated NF-κB pathway of this CTCL.
Collapse
Affiliation(s)
- M Mascolo
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - M F Romano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - G Ilardi
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - S Romano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - A Baldo
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - M Scalvenzi
- Department of Dermatology, University of Naples Federico II, Naples, Italy
| | - G Argenziano
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - F Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - D Russo
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - S Varricchio
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - F Pagliuca
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - M Russo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - G Ciancia
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - G De Rosa
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - S Staibano
- Pathology Section, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
20
|
Wilcox RA. Cutaneous T-cell lymphoma: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol 2017; 92:1085-1102. [PMID: 28872191 DOI: 10.1002/ajh.24876] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multi-disciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors prior to escalating therapy to include systemic, single-agent chemotherapy. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology; University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan 48109-5948
| |
Collapse
|
21
|
Abstract
OPINION STATEMENT Cutaneous T cell lymphomas (CTCLs) are non-Hodgkin lymphomas of skin homing T cells. Although early-stage disease may be limited to the skin, tumor cells in later stage disease can populate the blood, the lymph nodes, and the visceral organs. Unfortunately, there are few molecular biomarkers to guide diagnosis, staging, or treatment of CTCL. Diagnosis of CTCL can be challenging and requires the synthesis of clinical findings, histopathology, and T cell clonality studies; however, none of these tests are entirely sensitive or specific for CTCL. Treatment of CTCL is often empiric and is not typically based on specific molecular alterations, as is common in other cancers. In part, limitations in diagnosis and treatment selection reflect the limited insight into the genetic basis of CTCL. Recent next-generation sequencing has revolutionized our understanding of the mutational landscape in this disease. These analyses have uncovered ultraviolet radiation and recombination activating gene (RAG) endonucleases as important mutagens. Furthermore, these studies have revealed potentially targetable oncogenic mutations in the T cell receptor complex, NF-κB, and JAK-STAT signaling pathways. Collectively, these somatic mutations drive lymphomagenesis via cancer-promoting changes in proliferation, apoptosis, and T cell effector function. We expect that these genetic findings will launch a new era of precision medicine in CTCL.
Collapse
|
22
|
Abstract
In this issue of Cancer Cell, Qu et al. describe the chromatin accessibility profiles of cutaneous T cell lymphoma, with dynamic assessments of response and resistance to histone deacetylase inhibitor therapy. Their "personal regulome" analysis framework reveals chromatin features that may be predictive of clinical response to epigenetic therapy.
Collapse
Affiliation(s)
- Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
Malignant inflammation in cutaneous T-cell lymphoma-a hostile takeover. Semin Immunopathol 2016; 39:269-282. [PMID: 27717961 PMCID: PMC5368200 DOI: 10.1007/s00281-016-0594-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early indolent to progressive and advanced disease is accompanied by a significant shift in the nature of the tumor-associated inflammation. This shift does not appear to be an epiphenomenon but rather a critical step in disease progression. Emerging evidence supports that the malignant T cells take control of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We further define the term "malignant inflammation" as a pro-tumorigenic inflammatory environment orchestrated by the tumor cells and discuss some of the mechanisms driving the development of malignant inflammation in CTCL.
Collapse
|
24
|
|
25
|
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of extranodal lymphomas involving the skin. Diagnosis of the two main subtypes of CTCL-mycosis fungoides (MF) and Sézary syndrome (SS)-is based on the International Society for Cutaneous Lymphomas/European Organization for Research and Treatment of Cancer (ISCL/EORTC) classification system, which utilizes clinical, histopathological, molecular biologic, and immunopathologic features. Risk stratification, based on TNMB (tumor, node, metastasis, and blood) staging, provides prognostic information, with limited-stage disease conferring the longest median overall survival. Skin-directed therapies are preferred in the management of limited-stage disease, whereas advanced-stage disease requires systemic therapies. As the mechanisms of CTCL pathogenesis are increasingly understood, new monoclonal antibodies, checkpoint inhibitors, immunomodulatory agents, and small molecules are under investigation and may provide additional therapeutic options for those with advanced CTCL. This review examines the current landscape of targeted therapies in the treatment of CTCLs.
Collapse
Affiliation(s)
- Sumana Devata
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, 3A17 N. Ingalis Bldg, 300 N. Ingalis St. SPC 5419, Ann Arbor, MI, 48109-5419, USA.
| | - Ryan A Wilcox
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, 4310 CC, Ann Arbor, MI, 48109-5936, USA
| |
Collapse
|
26
|
Lauenborg B, Christensen L, Ralfkiaer U, Kopp KL, Jønson L, Dabelsteen S, Bonefeld CM, Geisler C, Gjerdrum LMR, Zhang Q, Wasik MA, Ralfkiaer E, Ødum N, Woetmann A. Malignant T cells express lymphotoxin α and drive endothelial activation in cutaneous T cell lymphoma. Oncotarget 2016; 6:15235-49. [PMID: 25915535 PMCID: PMC4558148 DOI: 10.18632/oncotarget.3837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 03/19/2015] [Indexed: 11/25/2022] Open
Abstract
Lymphotoxin α (LTα) plays a key role in the formation of lymphatic vasculature and secondary lymphoid structures. Cutaneous T cell lymphoma (CTCL) is the most common primary lymphoma of the skin and in advanced stages, malignant T cells spreads through the lymphatic to regional lymph nodes to internal organs and blood. Yet, little is known about the mechanism of the CTCL dissemination. Here, we show that CTCL cells express LTα in situ and that LTα expression is driven by aberrantly activated JAK3/STAT5 pathway. Importantly, via TNF receptor 2, LTα functions as an autocrine factor by stimulating expression of IL-6 in the malignant cells. LTα and IL-6, together with VEGF promote angiogenesis by inducing endothelial cell sprouting and tube formation. Thus, we propose that LTα plays a role in malignant angiogenesis and disease progression in CTCL and may serve as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Britt Lauenborg
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Louise Christensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Ralfkiaer
- Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katharina L Kopp
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Jønson
- Center for Genomic Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sally Dabelsteen
- Department of Oral Medicine and Pathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Qian Zhang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariusz A Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth Ralfkiaer
- Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Candidate driver genes involved in genome maintenance and DNA repair in Sézary syndrome. Blood 2016; 127:3387-97. [PMID: 27121473 DOI: 10.1182/blood-2016-02-699843] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.
Collapse
|
28
|
Wilcox RA. Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 2016; 91:151-65. [PMID: 26607183 PMCID: PMC4715621 DOI: 10.1002/ajh.24233] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral, or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors before escalating therapy to include systemic, single-agent chemotherapy. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology, University of Michigan Cancer Center, 1500 E. Medical Center Drive, Room 4310 CC, Ann Arbor, MI 48109-5948
| |
Collapse
|
29
|
Zhukov AS, Belousova IE, Samtsov AV. Immunological and molecular genetic mechanisms of the development of mycosis fungoides. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-4-42-50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This review reflects modern information about the possible mechanisms of skin lymphomas. Generalized the data of the possible etiologic factors of the disease. Described the basic pathogenesis and show practical importance identified molecular markers in the diagnosis and treatment of patients with lymphoproliferative diseases of the skin.
Collapse
|
30
|
Norozi F, Ahmadzadeh A, Shahjahani M, Shahrabi S, Saki N. Twist as a new prognostic marker in hematological malignancies. Clin Transl Oncol 2015. [DOI: 10.1007/s12094-015-1357-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Humme D, Haider A, Möbs M, Mitsui H, Suárez-Fariñas M, Ohmatsu H, Isabell Geilen C, Eberle J, Krueger JG, Beyer M, Hummel M, Anagnostopoulos I, Sterry W, Assaf C. Aurora Kinase A Is Upregulated in Cutaneous T-Cell Lymphoma and Represents a Potential Therapeutic Target. J Invest Dermatol 2015; 135:2292-2300. [PMID: 25848977 DOI: 10.1038/jid.2015.139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 01/01/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) form a heterogeneous group of non-Hodgkin's lymphomas characterized by only poor prognosis in advanced stage. Despite significant progress made in the identification of novel genes and pathways involved in the pathogenesis of cutaneous lymphoma, the therapeutic value of these findings has still to be proven. Here, we demonstrate by gene expression arrays that Aurora kinase A is one of the highly overexpressed genes of the serine/threonine kinase in CTCL. The finding was confirmed by quantitative reverse transcriptase-PCR, western blotting, and immunohistochemistry in CTCL cell lines and primary patient samples. Moreover, treatment with a specific Aurora kinase A inhibitor blocks cell proliferation by inducing cell cycle arrest in G2 phase, as well as apoptosis in CTCL cell lines. These data provide a promising rationale for using Aurora kinase A inhibition as a therapeutic modality of CTCL.
Collapse
Affiliation(s)
- Daniel Humme
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Ahmed Haider
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; These authors contributed equally to this work
| | - Markus Möbs
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hanako Ohmatsu
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Cyprienne Isabell Geilen
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Marc Beyer
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Wolfram Sterry
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Chalid Assaf
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany; HELIOS Klinikum Krefeld, Krefeld, Germany.
| |
Collapse
|
32
|
Chang TP, Poltoratsky V, Vancurova I. Bortezomib inhibits expression of TGF-β1, IL-10, and CXCR4, resulting in decreased survival and migration of cutaneous T cell lymphoma cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:2942-53. [PMID: 25681335 DOI: 10.4049/jimmunol.1402610] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased expression of the immunosuppressive cytokines, TGF-β1 and IL-10, is a hallmark of the advanced stages of cutaneous T cell lymphoma (CTCL), where it has been associated with suppressed immunity, increased susceptibility to infections, and diminished antitumor responses. Yet, little is known about the transcriptional regulation of TGF-β1 and IL-10 in CTCL, and about their function in regulating the CTCL cell responses. In this article, we show that TGF-β1 and IL-10 expression in CTCL cells is regulated by NF-κB and suppressed by bortezomib (BZ), which has shown promising results in the treatment of CTCL. However, although the TGF-β1 expression is IκBα dependent and is regulated by the canonical pathway, the IL-10 expression is IκBα independent, and its inhibition by BZ is associated with increased promoter recruitment of p52 that characterizes the noncanonical pathway. TGF-β1 suppression decreases CTCL cell viability and increases apoptosis, and adding exogenous TGF-β1 increases viability of BZ-treated CTCL cells, indicating TGF-β1 prosurvival function in CTCL cells. In addition, TGF-β1 suppression increases expression of the proinflammatory cytokines IL-8 and IL-17 in CTCL cells, suggesting that TGF-β1 also regulates the IL-8 and IL-17 expression. Importantly, our results demonstrate that BZ inhibits expression of the chemokine receptor CXCR4 in CTCL cells, resulting in their decreased migration, and that the CTCL cell migration is mediated by TGF-β1. These findings provide the first insights into the BZ-regulated TGF-β1 and IL-10 expression in CTCL cells, and indicate that TGF-β1 has a key role in regulating CTCL survival, inflammatory gene expression, and migration.
Collapse
Affiliation(s)
- Tzu-Pei Chang
- Department of Biological Sciences, St. John's University, New York, NY 11439; and
| | - Vladimir Poltoratsky
- Department of Pharmaceutical Sciences, St. John's University, New York, NY 11439
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, New York, NY 11439; and
| |
Collapse
|
33
|
Andersson E, Eldfors S, Edgren H, Ellonen P, Väkevä L, Ranki A, Mustjoki S. Novel TBL1XR1, EPHA7 and SLFN12 mutations in a Sezary syndrome patient discovered by whole exome sequencing. Exp Dermatol 2014; 23:366-8. [PMID: 24689486 DOI: 10.1111/exd.12405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2014] [Indexed: 12/23/2022]
Abstract
Sezary syndrome (SS) is an aggressive leukaemic variant of cutaneous T-cell lymphoma. Recurrent chromosomal aberrations have been found in SS, but the whole genetic mutation spectrum is unknown. To better understand the molecular pathogenesis of SS, we performed exome sequencing, copy number variation (CNV) and gene expression analysis of primary SS cells. In our index patient with typical SS, we found novel somatic missense mutations in TBL1XR1, EPHA7 and SLFN12 genes in addition to larger chromosomal changes. The mutations are located in biologically relevant genes affecting apoptosis and T-cell maturation. They may play a role in the pathobiology of the disease, but no recurrent mutations were discovered in nine additional patients with SS studied. Thus, screening of larger patient cohorts is needed to confirm their prevalence and biological significance in SS.
Collapse
Affiliation(s)
- Emma Andersson
- Hematology Research Unit Helsinki, Department of Hematology, University of Helsinki and Helsinki University Central Hospital Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
Deng C, Lipstein M, Rodriguez R, Serrano XOJ, McIntosh C, Tsai WY, Wasmuth AS, Jaken S, O'Connor OA. The novel IKK2 inhibitor LY2409881 potently synergizes with histone deacetylase inhibitors in preclinical models of lymphoma through the downregulation of NF-κB. Clin Cancer Res 2014; 21:134-45. [PMID: 25355930 DOI: 10.1158/1078-0432.ccr-14-0384] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the pharmacologic activity of a novel inhibitor of IκB kinase β (IKK2), LY2409881, in preclinical models of B- and T-cell lymphoma, as a single agent and in combination with histone deacetylase (HDAC) inhibitors. EXPERIMENTAL DESIGN The in vitro activity of LY2409881 was determined using an ATP-based growth inhibition assay and flow cytometric assay of apoptosis in lymphoma cell lines. The in vivo activity of LY2409881 was determined using SCID-beige xenograft mouse model. The mechanism of action was determined using immunoblotting, immuofluorescence, and electrophoretic mobility shift assay. Synergy of LY2409881 with other drugs active in lymphoma was determined by calculating relative risk ratio (RRR) and combination index (CI). RESULTS LY2409881 inhibited constitutively activated NF-κB, and caused concentration- and time-dependent growth inhibition and apoptosis in lymphoma cells. In models of diffuse large B-cell lymphoma (DLBCL), the cytotoxicity of LY2409881 correlated with the overall activation status of NF-κB, but not simply in a pattern predicted by the cell-of-origin classification of these cell lines. LY2409881 was safe to mice at three dose levels, 50, 100, and 200 mg/kg, all of which caused significant inhibition of tumor growth. LY2409881 suppressed the activity of the NF-κB subunit p65 in lymphoma cells treated by the HDAC inhibitor romidepsin, underlying a potential mechanism of the marked synergy observed of these two drugs. CONCLUSION Collectively, these data strongly suggest that targeting the NF-κB pathway in combination with romidepsin could represent a novel and potent regimen for the treatment of B- and T-cell lymphoma.
Collapse
Affiliation(s)
- Changchun Deng
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York. Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York.
| | - Mark Lipstein
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Richard Rodriguez
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Xavier O Jirau Serrano
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Christine McIntosh
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York. Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Wei-Yann Tsai
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, New York
| | - Andrew S Wasmuth
- Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York
| | - Susan Jaken
- Division of Cancer Research, Lilly Research Laboratories, Indianapolis, Indiana
| | - Owen A O'Connor
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York. Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York
| |
Collapse
|
35
|
Wilcox RA. Cutaneous T-cell lymphoma: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol 2014; 89:837-51. [PMID: 25042790 DOI: 10.1002/ajh.23756] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/12/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, and blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with biologic-response modifiers or histone deacetylase inhibitors prior to escalating therapy to include systemic, single-agent chemotherapy. Multiagent chemotherapy (e.g., CHOP) may be employed for those patients with extensive visceral involvement requiring rapid disease control. In highly selected patients, allogeneic stem-cell transplantation may be considered.
Collapse
Affiliation(s)
- Ryan A. Wilcox
- Division of Hematology/Oncology; University of Michigan Cancer Center; Ann Arbor Michigan
| |
Collapse
|
36
|
Chang TP, Vancurova I. Bcl3 regulates pro-survival and pro-inflammatory gene expression in cutaneous T-cell lymphoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2620-30. [PMID: 25089799 DOI: 10.1016/j.bbamcr.2014.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022]
Abstract
The advanced stages of cutaneous T cell lymphoma (CTCL) are characterized not only by decreased levels of pro-inflammatory cytokines, resulting in high susceptibility to infections, but also by high constitutive activity of NFκB, which promotes cell survival and resistance to apoptosis. The increased expression of the proto-oncogene Bcl3 belonging to IκB family is associated with the pathogenesis of the different types of human cancer, yet, the function and regulation of Bcl3 in CTCL have not been studied. Here, we show that Bcl3 is highly expressed in CTCL Hut-78 and HH cells. The suppression of Bcl3 levels decreases the expression of the pro-survival genes cIAP1 and cIAP2, reduces cell viability, and increases CTCL apoptosis. Interestingly, Bcl3 suppression concomitantly increases expression and the release of the pro-inflammatory cytokines IL-8 and IL-17 in CTCL cells. Chromatin immunoprecipitation studies show that Bcl3 regulates cIAP1, cIAP2, IL-8 and IL-17 gene expression through direct binding to their promoters. Bcl3 expression is regulated by bortezomib (BZ)-mediated proteasome inhibition, and BZ inhibits Bcl3 recruitment to its target promoters, resulting in decreased expression of cIAP1 and cIAP2, but increased expression of IL-8 and IL-17. The Bcl3 expression is regulated through NFκB subunit exchange on Bcl3 promoter. In untreated cells, the Bcl3 promoter is occupied predominantly by p65/p50 heterodimers, inducing Bcl3 expression; however, in BZ-treated cells, the p65/50 heterodimers are replaced by p52 subunits, resulting in Bcl3 transcriptional repression. These data provide the first insights into the function and regulation of Bcl3 in CTCL, and indicate that Bcl3 has an important pro-survival and immunosuppressive role in these cells.
Collapse
Affiliation(s)
- Tzu-Pei Chang
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, New York, NY 11439, USA.
| |
Collapse
|
37
|
The Role of IL-32 in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2014; 134:1428-1435. [DOI: 10.1038/jid.2013.488] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 12/20/2022]
|
38
|
Merindol N, Riquet A, Szablewski V, Eliaou JF, Puisieux A, Bonnefoy N. The emerging role of Twist proteins in hematopoietic cells and hematological malignancies. Blood Cancer J 2014; 4:e206. [PMID: 24769647 PMCID: PMC4003416 DOI: 10.1038/bcj.2014.22] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 02/03/2023] Open
Abstract
Twist1 and Twist2 (Twist1–2) are two transcription factors, members of the basic helix-loop-helix family, that have been well established as master transcriptional regulators of embryogenesis and developmental programs of mesenchymal cell lineages. Their role in oncogenesis in epithelium-derived cancer and in epithelial-to-mesenchymal transition has also been thoroughly characterized. Recently, emerging evidence also suggests a key role for Twist1–2 in the function and development of hematopoietic cells, as well as in survival and development of numerous hematological malignancies. In this review, we summarize the latest data that depict the role of Twist1–2 in monocytes, T cells and B lymphocyte activation, and in associated hematological malignancies.
Collapse
Affiliation(s)
- N Merindol
- Université de Lyon and INSERM U1111, Lyon, France
| | - A Riquet
- Université de Lyon and INSERM U1111, Lyon, France
| | - V Szablewski
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département de Biopathologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - J-F Eliaou
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - A Puisieux
- Centre de Receherche en Cancérologie de Lyon, INSERM UMR-S1052, Centre Léon Bérard, Lyon, France
| | - N Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France
| |
Collapse
|
39
|
Chang TP, Kim M, Vancurova I. Analysis of TGFβ1 and IL-10 transcriptional regulation in CTCL cells by chromatin immunoprecipitation. Methods Mol Biol 2014; 1172:329-41. [PMID: 24908319 DOI: 10.1007/978-1-4939-0928-5_30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immunosuppressive cytokines transforming growth factor β1 (TGFβ1) and interleukin-10 (IL-10) regulate a variety of biological processes including differentiation, proliferation, tissue repair, tumorigenesis, inflammation, and host defense. Aberrant expression of TGFβ1 and IL-10 has been associated with many types of autoimmune and inflammatory disorders, as well as with many types of cancer and leukemia. Patients with cutaneous T cell lymphoma (CTCL) have high levels of malignant CD4+ T cells expressing IL-10 and TGFβ1 that suppress the immune system and diminish the antitumor responses. The transcriptional regulation of TGFβ1 and IL-10 expression is orchestrated by several transcription factors, including NFκB. However, while the transcriptional regulation of pro-inflammatory and anti-apoptotic genes by NFκB has been studied extensively, much less is known about the NFκB regulation of immunosuppressive genes. In this chapter, we describe a protocol that uses chromatin immunoprecipitation (ChIP) to analyze the transcriptional regulation of TGFβ1 and IL-10 by measuring recruitment of NFκB p65, p50, c-Rel, Rel-B, and p52 subunits to TGFβ1 and IL-10 promoters in human CTCL Hut-78 cells.
Collapse
Affiliation(s)
- Tzu-Pei Chang
- Department of Biology, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | | | | |
Collapse
|
40
|
Biskup E, Kamstrup MR, Manfé V, Gniadecki R. Proteasome inhibition as a novel mechanism of the proapoptotic activity of γ-secretase inhibitor I in cutaneous T-cell lymphoma. Br J Dermatol 2013; 168:504-12. [PMID: 23445313 DOI: 10.1111/bjd.12071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We have previously discovered that Notch1 is expressed on malignant T cells in cutaneous T-cell lymphoma (CTCL), and is required for survival of CTCL cell lines. Notch can be inhibited by γ-secretase inhibitors (GSIs), which differ widely in their ability to induce apoptosis in CTCL. OBJECTIVES To investigate whether GSI-I, in addition to inhibiting Notch, induces apoptosis in CTCL by proteasome inhibition, as GSI-I is very potent and has structural similarity to the proteasome inhibitor MG-132. METHODS Cell lines derived from CTCL (MyLa, SeAx, JK, Mac1 and Mac2a) were treated with GSI-I and two other proteasome inhibitors (MG-132 and bortezomib). The effects on cell viability, apoptosis and proteasome activity were measured, as was the impact on the prosurvival, nuclear factor κB (NF-κB) pathway. RESULTS In CTCL, GSI-I had proteasome-blocking activity with a potency comparable to the proteasome inhibitors MG-132 and bortezomib. Proteasome inhibition was the main mechanism responsible for GSI-I-induced cell death, as tiron, a compound known to reverse the effect of MG-132, restored proteasome activity and largely abrogated the cytotoxic effect of GSI-I. Although inactivation of NF-κB is an important mechanism of action for proteasome inhibitors, we demonstrated an apparent activation of NF-κB. Furthermore, we showed that while the tumour suppressor protein p53 was induced during proteasome inhibition, it was dispensable for CTCL apoptosis, as both SeAx cells, which harbour p53 mutations that attenuate the apoptotic capacity, and HuT-78 cells, which have a deleted p53 gene, demonstrated potent apoptotic response. CONCLUSIONS GSI-I represents an interesting drug with a dual mechanism of action comprising inhibition of both Notch and the proteasome.
Collapse
Affiliation(s)
- E Biskup
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen-2400, Denmark
| | | | | | | |
Collapse
|
41
|
Willerslev-Olsen A, Krejsgaard T, Lindahl LM, Bonefeld CM, A. Wasik M, B. Koralov S, Geisler C, Kilian M, Iversen L, Woetmann A, Odum N. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma. Toxins (Basel) 2013; 5:1402-21. [PMID: 23949004 PMCID: PMC3760043 DOI: 10.3390/toxins5081402] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 01/02/2023] Open
Abstract
In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus. Bacterial toxins such as staphylococcal enterotoxins (SE) have long been suspected to be involved in the pathogenesis in CTCL. Here, we review links between bacterial infections and CTCL with focus on earlier studies addressing a direct role of SE on malignant T cells and recent data indicating novel indirect mechanisms involving SE- and cytokine-driven cross-talk between malignant- and non-malignant T cells.
Collapse
Affiliation(s)
- Andreas Willerslev-Olsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Thorbjørn Krejsgaard
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Lise M. Lindahl
- Department of Dermatology, Aarhus University Hospital, Aarhus 8000, Denmark; E-Mails: (L.M.L.); (L.I.)
| | - Charlotte Menne Bonefeld
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Mariusz A. Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Sergei B. Koralov
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA; E-Mail:
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; E-Mail:
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus 8000, Denmark; E-Mails: (L.M.L.); (L.I.)
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
| | - Niels Odum
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen 2200, Denmark; E-Mails: (A.W.-O.); (T.K.); (C.M.B.); (C.G.); (A.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +45-3532-7879
| |
Collapse
|
42
|
Kopp KL, Ralfkiaer U, Gjerdrum LMR, Helvad R, Pedersen IH, Litman T, Jønson L, Hagedorn PH, Krejsgaard T, Gniadecki R, Bonefeld CM, Skov L, Geisler C, Wasik MA, Ralfkiaer E, Ødum N, Woetmann A. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle 2013; 12:1939-47. [PMID: 23676217 DOI: 10.4161/cc.24987] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains elusive. Recent discoveries indicate that the oncogenic microRNA miR-155 is overexpressed in affected skin from CTCL patients. Here, we address what drives the expression of miR-155 and investigate its role in the pathogenesis of CTCL. We show that malignant T cells constitutively express high levels of miR-155 and its host gene BIC (B cell integration cluster). Using ChIP-seq, we identify BIC as a target of transcription factor STAT5, which is aberrantly activated in malignant T cells and induced by IL-2/IL-15 in non-malignant T cells. Incubation with JAK inhibitor or siRNA-mediated knockdown of STAT5 decreases BIC/miR-155 expression, whereas IL-2 and IL-15 increase their expression in cell lines and primary cells. In contrast, knockdown of STAT3 has no effect, and BIC is not a transcriptional target of STAT3, indicating that regulation of BIC/miR-155 expression by STAT5 is highly specific. Malignant proliferation is significantly inhibited by an antisense-miR-155 as well as by knockdown of STAT5 and BIC. In conclusion, we provide the first evidence that STAT5 drives expression of oncogenic BIC/miR-155 in cancer. Moreover, our data indicate that the STAT5/BIC/miR-155 pathway promotes proliferation of malignant T cells, and therefore is a putative target for therapy in CTCL.
Collapse
Affiliation(s)
- Katharina L Kopp
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Odqvist L, Sánchez-Beato M, Montes-Moreno S, Martín-Sánchez E, Pajares R, Sánchez-Verde L, Ortiz-Romero PL, Rodriguez J, Rodríguez-Pinilla SM, Iniesta-Martínez F, Solera-Arroyo JC, Ramos-Asensio R, Flores T, Palanca JM, Bragado FG, Franjo PD, Piris MA. NIK controls classical and alternative NF-κB activation and is necessary for the survival of human T-cell lymphoma cells. Clin Cancer Res 2013; 19:2319-30. [PMID: 23536439 DOI: 10.1158/1078-0432.ccr-12-3151] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Peripheral T-cell lymphomas (PTCL) are a heterogeneous entity of neoplasms with poor prognosis, a lack of effective therapies, and a largely unknown molecular pathology. Deregulated NF-κB activity has been associated with several lymphoproliferative diseases, but its importance in T-cell lymphomagenesis is poorly understood. We investigated the function of the NF-κB-inducing kinase (NIK), in this pathway and its role as a potential molecular target in T-cell lymphomas. EXPERIMENTAL DESIGN We used immunohistochemistry to analyze the expression of different NF-κB members in primary human PTCL samples and to study its clinical impact. With the aim of inhibiting the pathway, we used genetic silencing of NIK in several T-cell lymphoma cell lines and observed its effect on downstream targets and cell viability. RESULTS We showed that the NF-κB pathway was activated in a subset of PTCLs associated with poor overall survival. NIK was overexpressed in a number of PTCL cell lines and primary samples, and a pivotal role for NIK in the survival of these tumor cells was unveiled. NIK depletion led to a dramatic induction of apoptosis in NIK-overexpressing cell lines and also showed a more pronounced effect on cell survival than inhibitor of kappa B kinase (IKK) knockdown. NIK silencing induced a blockage of both classical and alternative NF-κB activation and reduced expression of several prosurvival and antiapoptotic factors. CONCLUSIONS The results of the present study indicate that NIK could be a promising therapeutic target in these aggressive malignancies.
Collapse
Affiliation(s)
- Lina Odqvist
- Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
The role of molecular pathology in the diagnosis of cutaneous lymphomas. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:913523. [PMID: 23213624 PMCID: PMC3506916 DOI: 10.1155/2012/913523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/18/2012] [Indexed: 01/17/2023]
Abstract
Primary cutaneous lymphomas can be difficult to be distinguished from reactive mimics, even when integrating histologic, immunophenotypic, and clinical findings. Molecular studies, especially PCR-based antigen receptor gene rearrangement (ARGR) analysis, are frequently useful ancillary studies in the evaluation of cutaneous lymphoproliferations. The biologic basis of ARGR studies is discussed, as well as a comparison of various current protocols. The pitfalls and limitations of ARGR analysis are also highlighted. Recent advances in the understanding of the molecular pathogenesis of various cutaneous lymphomas are discussed. Some of these nascent discoveries may lead to the development of diagnostically useful molecular assays.
Collapse
|
45
|
Mapping Toll-Like Receptor Activity in Different Stages of Cutaneous T-Cell Lymphoma. Am J Dermatopathol 2012; 34:691-8. [DOI: 10.1097/dad.0b013e3182448f7c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
A Meta-Analysis of Gene Expression Data Identifies a Molecular Signature Characteristic for Tumor-Stage Mycosis Fungoides. J Invest Dermatol 2012; 132:2050-9. [DOI: 10.1038/jid.2012.117] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Catalán U, Fernández-Castillejo S, Pons L, Heras M, Aragonés G, Anglès N, Morelló JR, Solà R. Alpha-tocopherol and BAY 11-7082 reduce vascular cell adhesion molecule in human aortic endothelial cells. J Vasc Res 2012; 49:319-28. [PMID: 22572606 DOI: 10.1159/000337466] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/05/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In endothelial dysfunction, vascular cell adhesion molecule-1 (VCAM-1), E-selectin and intercellular adhesion molecule-1 (ICAM-1) expression (collectively termed cell adhesion molecules; CAMs) increase at sites of atherosclerosis and are stimulated by proinflammatory cytokines such as tumor necrosis factor-α (TNF-α). METHODS We evaluated the effect of alpha-tocopherol (AT; 10-150 µM) and BAY 11-7082 (BAY; 0.1 or 1 µM) on CAMs mRNA expression as well as their protein in soluble release form (sCAMs) in human aortic endothelial cells (HAECs) activated by TNF-α (1 or 10 ng/ml). Also, we determined the extent of lymphocyte adhesion to activated HAECs. RESULTS BAY reduced VCAM-1, E-selectin and ICAM-1 mRNA expression by 30, 30 and 10%, respectively. Furthermore, protein reduction of sVCAM-1 by 70%, sE-selectin by 51% and sICAM-1 by 25% compared to HAECs stimulated by TNF-α was observed (p < 0.05). AT (50, 75 and 150 µM) decreased VCAM-1 mRNA expression by 30% and sVCAM-1 protein by 33% compared to HAECs stimulated by TNF-α (p < 0.05). TNF-α-activated HAEC adhesion to human Jurkat T lymphocytes was higher compared to nonactivated HAECs (p < 0.05). BAY (2 and 5 µM) reduced this lymphocyte adhesion (p < 0.05). CONCLUSION BAY reduces all the CAMs studied as well as cell adhesion, while AT selectively inhibits VCAM-1; both induce endothelial dysfunction improvement.
Collapse
Affiliation(s)
- Ursula Catalán
- Unitat de Recerca en Lípids i Arteriosclerosi, CIBERDEM, Hospital Universitari Sant Joan, IISPV, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Juvekar A, Ramaswami S, Manna S, Chang TP, Zubair A, Vancurova I. Electrophoretic mobility shift assay analysis of NFκB transcriptional regulation by nuclear IκBα. Methods Mol Biol 2012; 809:49-62. [PMID: 22113267 DOI: 10.1007/978-1-61779-376-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcription factor NFκB is a key regulator of genes involved in immune and inflammatory responses, as well as genes regulating cell proliferation and survival. In addition to many inflammatory disorders, NFκB is constitutively activated in a variety of human cancers and leukemia. Thus, inhibition of NFκB DNA binding activity represents an important therapeutic approach for disorders characterized by high levels of constitutive NFκB activity. We have previously shown that NFκB DNA binding activity is suppressed by the nuclear translocation and accumulation of IκBα, which is induced by inhibition of the 26S proteasome. In this chapter, we describe a protocol that uses small inhibitory RNA (si RNA) interference followed by electrophoretic mobility shift assay (EMSA) to analyze the regulation of NFκB DNA binding by nuclear IκBα induced by the proteasome inhibitor MG132. Using this protocol, we show that in human leukemia Hut-78 cells that exhibit high levels of NFκB DNA binding activity, MG132 induces nuclear translocation and accumulation of IκBα, which then specifically inhibits NFκB DNA binding. This protocol uses human leukemia Hut-78 cells; however, it can be easily adapted for other cells exhibiting high levels of constitutive NFκB DNA binding.
Collapse
Affiliation(s)
- Ashish Juvekar
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | | | | | | | | | | |
Collapse
|
50
|
High soluble CD30, CD25, and IL-6 may identify patients with worse survival in CD30+ cutaneous lymphomas and early mycosis fungoides. J Invest Dermatol 2011; 132:703-10. [PMID: 22071475 PMCID: PMC3278552 DOI: 10.1038/jid.2011.351] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Histopathology alone cannot predict outcome of patients with CD30+ primary cutaneous lymphoproliferative disorders (CD30CLPD) and early mycosis fungoides (MF). To test the hypothesis that serum cytokines/cytokine receptors provide prognostic information in these disorders, we measured soluble CD30 (sCD30), sCD25, and selected cytokines in cell cultures and sera of 116 patients with CD30CLPD and 96 patients with early MF followed up to 20 years. Significant positive correlation was found between sCD30 levels and sCD25, CD40L, IL-6, and IL-8, suggesting CD30+ neoplastic cells secrete these cytokines, but not Th2 cytokines. In vitro studies confirmed sCD30, sCD25, IL-6 and IL-8 are secreted by CD30CLPD-derived cell lines. CD30CLPD patients with above normal sCD30 and sCD25 had worse overall and disease-related survivals, but only sCD30 retained significance in Cox models that included advanced age. High sCD30 also identified patients with worse survival in early MF. Increased IL-6 and IL-8 correlated with poor disease-related survival in CD30CLPD patients, We conclude that: (1) neoplastic cells of some CD30CLPD patients do not resemble Th2 cells, (2) high serum sCD30, sCD25, IL-6, and perhaps IL-8 levels may provide prognostic information useful for patient management.
Collapse
|