1
|
Kerskes CHM, van den Eijnde CJME, Aarnoudse AJLHJ, Grouls RJE, Deiman BALM, Deenen MJ. The Effect of Genotyping on the Number of Pharmacotherapeutic Gene–Drug Interventions in Chronic Kidney Disease Patients. PHARMACY 2023; 11:pharmacy11020069. [PMID: 37104075 PMCID: PMC10145606 DOI: 10.3390/pharmacy11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Patients with chronic kidney disease (CKD) stage 3–5 are polypharmacy patients. Many of these drugs are metabolized by cytochrome P450 (CYP450) and CYP450. Genetic polymorphism is well known to result in altered drug metabolism capacity. This study determined the added value of pharmacogenetic testing to the routine medication evaluation in polypharmacy patients with CKD. In adult outpatient polypharmacy patients with CKD3-5 disease, a pharmacogenetic profile was determined. Then, automated medication surveillance for gene–drug interactions was performed based on the pharmacogenetic profile and the patients’ current prescriptions. Of all identified gene–drug interactions, the hospital pharmacist and the treating nephrologist together assessed clinical relevance and necessity of a pharmacotherapeutic intervention. The primary endpoint of the study was the total number of applied pharmacotherapeutic interventions based on a relevant gene–drug interaction. A total of 61 patients were enrolled in the study. Medication surveillance resulted in a total of 66 gene–drug interactions, of which 26 (39%) were considered clinically relevant. This resulted in 26 applied pharmacotherapeutic interventions in 20 patients. Systematic pharmacogenetic testing enables pharmacotherapeutic interventions based on relevant gene–drug interactions. This study showed that pharmacogenetic testing adds to routine medication evaluation and could lead to optimized pharmacotherapy in CKD patients.
Collapse
Affiliation(s)
| | - Carien J. M. E. van den Eijnde
- Department of Clinical Pharmacy, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Faculty of Pharmacy, University Utrecht, 3508 TB Utrecht, The Netherlands
| | | | - René J. E. Grouls
- Department of Clinical Pharmacy, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Birgit A. L. M. Deiman
- Department of Clinical Chemistry, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Maarten J. Deenen
- Department of Clinical Pharmacy, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
2
|
Williams RM, Shah J, Mercer E, Tian HS, Thompson V, Cheung JM, Dorso M, Kubala JM, Gudas LJ, de Stanchina E, Jaimes EA, Heller DA. Kidney-Targeted Redox Scavenger Therapy Prevents Cisplatin-Induced Acute Kidney Injury. Front Pharmacol 2022; 12:790913. [PMID: 35046813 PMCID: PMC8762298 DOI: 10.3389/fphar.2021.790913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-induced acute kidney injury (CI-AKI) is a significant co-morbidity of chemotherapeutic regimens. While this condition is associated with substantially lower survival and increased economic burden, there is no pharmacological agent to effectively treat CI-AKI. The disease is hallmarked by acute tubular necrosis of the proximal tubular epithelial cells primarily due to increased oxidative stress. We investigated a drug delivery strategy to improve the pharmacokinetics of an approved therapy that does not normally demonstrate appreciable efficacy in CI-AKI, as a preventive intervention. In prior work, we developed a kidney-selective mesoscale nanoparticle (MNP) that targets the renal proximal tubular epithelium. Here, we found that the nanoparticles target the kidneys in a mouse model of CI-AKI with significant damage. We evaluated MNPs loaded with the reactive oxygen species scavenger edaravone, currently used to treat stroke and ALS. We found a marked and significant therapeutic benefit with edaravone-loaded MNPs, including improved renal function, which we demonstrated was likely due to a decrease in tubular epithelial cell damage and death imparted by the specific delivery of edaravone. The results suggest that renal-selective edaravone delivery holds potential for the prevention of acute kidney injury among patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Ryan M. Williams
- The City College of New York Department of Biomedical Engineering, New York, NY, United States
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Janki Shah
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Elizabeth Mercer
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Helen S. Tian
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Vanessa Thompson
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin M. Cheung
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Madeline Dorso
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| | - Jaclyn M. Kubala
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, United States
| | | | - Edgar A. Jaimes
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
3
|
Reply to: "Sofosbuvir and the risk of kidney dysfunction". J Hepatol 2021; 74:257-258. [PMID: 33071008 DOI: 10.1016/j.jhep.2020.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/25/2020] [Indexed: 12/04/2022]
|
5
|
Meng HY, Luo ZH, Hu B, Jin WL, Yan CK, Li ZB, Xue YY, Liu Y, Luo YE, Xu LQ, Yang H. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 2018. [PMID: 29517418 DOI: 10.2217/pgs-2017-0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that genomic diversity may play a key role in different clinical outcomes, and the importance of SNPs is becoming increasingly clear. In this article, we summarize the bioactivity of SNPs that may affect the sensitivity to or possibility of drug reactions that occur among the signaling pathways of regularly used immunosuppressants, such as glucocorticoids, azathioprine, tacrolimus, mycophenolate mofetil, cyclophosphamide and methotrexate. The development of bioinformatics, including machine learning models, has enabled prediction of the proper immunosuppressant dosage with minimal adverse drug reactions for patients after organ transplantation or for those with autoimmune diseases. This article provides a theoretical basis for the personalized use of immunosuppressants in the future.
Collapse
Affiliation(s)
- Huan-Yu Meng
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Bo Hu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Wan-Lin Jin
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Cheng-Kai Yan
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhi-Bin Li
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yuan-Yuan Xue
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yu Liu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yi-En Luo
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Li-Qun Xu
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, PR China
| |
Collapse
|
6
|
Caetano-Pinto P, Jansen J, Assaraf YG, Masereeuw R. The importance of breast cancer resistance protein to the kidneys excretory function and chemotherapeutic resistance. Drug Resist Updat 2017; 30:15-27. [DOI: 10.1016/j.drup.2017.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/15/2022]
|