1
|
Osredkar J, Baškovič BŽ, Finderle P, Bobrowska-Korczak B, Gątarek P, Rosiak A, Giebułtowicz J, Vrhovšek MJ, Kałużna-Czaplińska J. Relationship between Excreted Uremic Toxins and Degree of Disorder of Children with ASD. Int J Mol Sci 2023; 24:7078. [PMID: 37108238 PMCID: PMC10138607 DOI: 10.3390/ijms24087078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder in which communication and behavior are affected. A number of studies have investigated potential biomarkers, including uremic toxins. The aim of our study was to determine uremic toxins in the urine of children with ASD (143) and compare the results with healthy children (48). Uremic toxins were determined with a validated high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS) method. We observed higher levels of p-cresyl sulphate (pCS) and indoxyl sulphate (IS) in the ASD group compared to the controls. Moreover, the toxin levels of trimethylamine N-oxide (TMAO), symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were lower in ASD patients. Similarly, for pCS and IS in children classified, according to the intensity of their symptoms, into mild, moderate, and severe, elevated levels of these compounds were observed. For mild severity of the disorder, elevated levels of TMAO and comparable levels of SDMA and ADMA for ASD children as compared to the controls were observed in the urine. For moderate severity of ASD, significantly elevated levels of TMAO but reduced levels of SDMA and ADMA were observed in the urine of ASD children as compared to the controls. When the results obtained for severe ASD severity were considered, reduced levels of TMAO and comparable levels of SDMA and ADMA were observed in ASD children.
Collapse
Affiliation(s)
- Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Barbara Žvar Baškovič
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
| | - Petra Finderle
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Paulina Gątarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelina Rosiak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Maja Jekovec Vrhovšek
- Center for Autism, Unit of Child Psychiatry, University Children’s Hospital, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia;
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
2
|
|
3
|
Michna M, Kovarova L, Valerianova A, Malikova H, Weichet J, Malik J. Review of the structural and functional brain changes associated with chronic kidney disease. Physiol Res 2020; 69:1013-1028. [PMID: 33129242 PMCID: PMC8549872 DOI: 10.33549/physiolres.934420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) leads to profound metabolic and hemodynamic changes, which damage other organs, such as heart and brain. The brain abnormalities and cognitive deficit progress with the severity of the CKD and are mostly expressed among hemodialysis patients. They have great socio-economic impact. In this review, we present the current knowledge of involved mechanisms.
Collapse
Affiliation(s)
- M Michna
- Department of Radiology, University Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
4
|
Fabresse N, Uteem I, Lamy E, Massy Z, Larabi IA, Alvarez JC. Quantification of free and protein bound uremic toxins in human serum by LC-MS/MS: Comparison of rapid equilibrium dialysis and ultrafiltration. Clin Chim Acta 2020; 507:228-235. [PMID: 32371217 DOI: 10.1016/j.cca.2020.04.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
The objectives of this study were (1) to develop a method for the determination of 10 uremic toxins (3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), hippuric acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid, kynurenine, p-cresyl glucuronide, p-cresyl sulfate, phenylacetylglutamine and trimethylamine N-oxide (TMAO)), and 3 precursors (tyrosine, phenylalanine, tryptophan) in serum and (2) to compare two separation methods to determine the free serum fraction: rapid equilibrium dialysis (RED) and ultrafiltration (UF). The method was developed on a liquid chromatography system coupled to a tandem mass spectrometer. Fifty µL of serum sample were precipitated with methanol after addition of internal standard. The two separation methods were compared using serum samples from patients suffering from renal impairment (n = 30). The method has been validated according to the European Medicines Agency (EMA) guidelines. Calibration curves were linear from 1 to 50 ng/mL up to 10,000-50,000 ng/mL according to the compounds. The comparison between the two separation methods produced similar results for all compounds except kynurenine, tryptophan (around 30% more with UF) and indole-3-acetic acid (around 30% more with RED). This study has allowed the development and validation of a sensitive and robust assay for the quantification of free and total concentrations of 10 uremic toxins and 3 precursors in human serum.
Collapse
Affiliation(s)
- Nicolas Fabresse
- Laboratory of Pharmacology and Toxicology, CHU Raymond Poincare, Garches, France; INSERM U-1173, UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), Montigny le Bretonneux, France
| | - Imteyaz Uteem
- INSERM U-1173, UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), Montigny le Bretonneux, France
| | - Elodie Lamy
- INSERM U-1173, UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), Montigny le Bretonneux, France
| | - Ziad Massy
- Inserm U-1018 Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Equipe 5, Villejuif, France; Division of Nephrology, Ambroise Paré Hospital, Assistance Publique - Hôpitaux de Paris and Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), 9 Avenue Charles de Gaulle, 92104 Boulogne Billancourt Cedex, France
| | - Islam Amine Larabi
- Laboratory of Pharmacology and Toxicology, CHU Raymond Poincare, Garches, France; INSERM U-1173, UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), Montigny le Bretonneux, France
| | - Jean-Claude Alvarez
- Laboratory of Pharmacology and Toxicology, CHU Raymond Poincare, Garches, France; INSERM U-1173, UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), Montigny le Bretonneux, France.
| |
Collapse
|
5
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:toxins10010033. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β2-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Plasma oxalate levels in prevalent hemodialysis patients and potential implications for ascorbic acid supplementation. Clin Biochem 2016; 49:1133-1139. [DOI: 10.1016/j.clinbiochem.2016.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/31/2022]
|
7
|
Ferraz N, Mihranyan A. Is there a future for electrochemically assisted hemodialysis? Focus on the application of polypyrrole–nanocellulose composites. Nanomedicine (Lond) 2014; 9:1095-110. [DOI: 10.2217/nnm.14.49] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This work summarizes the various aspects of using electrochemically assisted solute removal techniques in hemodialysis with a focus on blood electrodialysis and electrochemically controlled uremic retention solute removal using polypyrrole. In particular, the feasibility of using highly porous conductive polypyrrole–Cladophora cellulose membranes for hemodialysis are overviewed as a part of our dedicated research efforts during the past 4 years. The potential benefits and the current limitations associated with using the electrochemically controlled uremic retention solute removal techniques are discussed in detail.
Collapse
Affiliation(s)
- Natalia Ferraz
- Nanotechnology & Functional Materials, Department of Engineering Sciences, Box 534, Uppsala University, 75121 Uppsala, Sweden
| | - Albert Mihranyan
- Nanotechnology & Functional Materials, Department of Engineering Sciences, Box 534, Uppsala University, 75121 Uppsala, Sweden
- Division of Materials Science, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
8
|
Ferraz N, Carlsson DO, Hong J, Larsson R, Fellström B, Nyholm L, Strømme M, Mihranyan A. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J R Soc Interface 2012; 9:1943-55. [PMID: 22298813 PMCID: PMC3385765 DOI: 10.1098/rsif.2012.0019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m(2) g(-1)) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g(-1) in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g(-1) in an isotonic solution. The heparinized PPy-cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility.
Collapse
Affiliation(s)
- Natalia Ferraz
- Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, The Ångström Laboratory, Box 534, 75121 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Urea kinetics and intermittent dialysis prescription in small animals. Vet Clin North Am Small Anim Pract 2011; 41:193-225. [PMID: 21251518 DOI: 10.1016/j.cvsm.2010.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hemodialysis improves survival for animals with acute kidney injury beyond what would be expected with conventional management of the same animals. Clinical evidence and experience in human patients suggest a role for earlier intervention with renal replacement to avoid the morbidity of uremia and to promote better metabolic stability and recovery. For a large population of animal patients, it is the advanced standard for the management of acute and chronic uremia, life-threatening poisoning, and fluid overload for which there is no alternative therapy.
Collapse
|
10
|
Schupp N, Heidland A, Stopper H. Genomic damage in endstage renal disease-contribution of uremic toxins. Toxins (Basel) 2010; 2:2340-58. [PMID: 22069557 PMCID: PMC3153169 DOI: 10.3390/toxins2102340] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 09/23/2010] [Accepted: 09/26/2010] [Indexed: 12/16/2022] Open
Abstract
Patients with end-stage renal disease (ESRD), whether on conservative, peritoneal or hemodialysis therapy, have elevated genomic damage in peripheral blood lymphocytes and an increased cancer incidence, especially of the kidney. The damage is possibly due to accumulation of uremic toxins like advanced glycation endproducts or homocysteine. However, other endogenous substances with genotoxic properties, which are increased in ESRD, could be involved, such as the blood pressure regulating hormones angiotensin II and aldosterone or the inflammatory cytokine TNF-α. This review provides an overview of genomic damage observed in ESRD patients, focuses on possible underlying causes and shows modulations of the damage by modern dialysis strategies and vitamin supplementation.
Collapse
Affiliation(s)
- Nicole Schupp
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany;
- Author to whom correspondence should be addressed; ; Tel.: +49-931-20148722; Fax: +49-931-20148446
| | - August Heidland
- Department of Internal Medicine, University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany;
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany;
| |
Collapse
|
11
|
Vanholder R, Abou-Deif O, Argiles A, Baurmeister U, Beige J, Brouckaert P, Brunet P, Cohen G, De Deyn PP, Drüeke TB, Fliser D, Glorieux G, Herget-Rosenthal S, Hörl WH, Jankowski J, Jörres A, Massy ZA, Mischak H, Perna AF, Rodriguez-Portillo JM, Spasovski G, Stegmayr BG, Stenvinkel P, Thornalley PJ, Wanner C, Wiecek A. The Role of EUTox in Uremic Toxin Research. Semin Dial 2009; 22:323-8. [DOI: 10.1111/j.1525-139x.2009.00574.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Abstract
PURPOSE OF REVIEW To describe the relationship of renal disease and metabolic syndrome with cardiovascular disease and explore the role of toxic solutes retained due to renal impairment as mediators of cardiovascular risk. RECENT FINDINGS Metabolic syndrome and chronic kidney disease are related. Chronic kidney disease is partly caused by, but also mediates, some of the adverse effects of metabolic syndrome. Uremic toxins with potent effects have been identified. Examples include the nitric oxide synthase inhibitor asymmetric dimethyl arginine - this substance accumulates as renal function declines and has a strong relationship with cardiovascular events and mortality in a variety of populations. The effect of asymmetric dimethyl arginine in causing arterial stiffness, a phenomenon which has been linked with risk of vascular disease, offers a mechanistic explanation for the importance of this substance. SUMMARY A pathophysiology that links renal impairment with cardiovascular risk has long been suspected and is being elucidated through the effects of uremic toxins.
Collapse
Affiliation(s)
- Mark Stafford-Smith
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
13
|
Torremans A, Marescau B, Kränzlin B, Gretz N, Billiouw JM, Vanholder R, De Smet R, Bouwman K, Brouns R, De Deyn PP. Biochemical validation of a rat model for polycystic kidney disease: Comparison of guanidino compound profile with the human condition. Kidney Int 2006; 69:2003-12. [PMID: 16641922 DOI: 10.1038/sj.ki.5000443] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polycystic kidney disease (PKD) accounts for 7-10% of all dialyzed renal insufficient patients. Accumulation of specific guanidino compounds (GCs) has been related to neurological, cardiovascular, hematological, and immunological complications of renal failure. In this study, we investigate whether the PKD/Mhm rat model can be used as a biochemical model for human PKD. For the validation of the rat model, we performed the first detailed evaluation of the concentrations of GCs in serum and urine of patients with PKD in addition to the GC patterns in the plasma, urine, and tissues of the PKD/Mhm rat model. The GCs were determined after separation on a cation exchange resin and fluorescence detection. The GC levels and changes observed in blood and urine of patients with PKD are comparable with those found in patients with renal insufficiency due to different etiologies. The PKD/Mhm rat model can be used as a biochemical model for human PKD as the obvious increases of urea, guanidinosuccinic acid, creatinine, guanidine, methylguanidine, and N(G)N(G)-dimethylarginine (symmetrical dimethylarginine) seen in blood of oldest heterozygous and younger homozygous PKD rats were largely within the same range as those found in the studied human PKD population, especially in patients with a glomerular filtration rate below 60 ml/min/1.73 m(2). The decreased levels of plasma guanidinoacetic acid seen at end-stage renal disease in homozygous and oldest heterozygous rats were also observed in serum of patients with a glomerular filtration rate below 20 ml/min/1.73 m(2). The PKD/Mhm rat model has, besides similar disease characteristics with human PKD, comparable GC alterations.
Collapse
Affiliation(s)
- A Torremans
- Laboratory of Neurochemistry and Behavior, University of Antwerp, Institute Born-Bunge, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Law RO. Cerebrocellular Swelling in the Presence of Uraemic Guanidino Compounds: Ameliorative Effects of Taurine. Neurochem Res 2005; 30:1465-70. [PMID: 16362765 DOI: 10.1007/s11064-005-8823-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
Cell volumes (equilibrium non-inulin spaces) have been measured in slices of rat cerebral cortex incubated in the presence of uraemic guanidino compounds. Of 5 guanidino compounds tested, all but one caused significant cell swelling. This was most pronounced for guanidinosuccinic acid (GSA, 40 micromol/l)(+22%) and guanidine hydrochloride (G, 3 micromol/l)(+13%). Swelling was reduced by taurine in a dose-dependent manner, being completely abolished at 20 mmol/l. Swelling was also abolished by the antioxidants ascorbic acid (0.4 mmol/l) and butylated hydroxytoluene (0.5 mmol/l), the free radical scavenger N-acetyl-L-cysteine (10 mmol/l) and the lipid peroxidase inhibitor desmethyl tirilazad (100 micromol/l). The remission of swelling by 20 mmol/l taurine was reduced by 50% by the taurine transport inhibitor guanidinoethylsulphonate (GES, 1 mmol/l). This figure was not significantly altered when the concentration of GES was increased to 10 mmol/l. It was also reduced by 45% by the GABAA receptor antagonist bicuculline (100 micromol/l). It was completely abolished when both GES and bicuculline were present. It is suggested that guanidino compounds result in cells undergoing oxidative-nitrosative stress, and that taurine protects against the resultant cell swelling by 2 mechanisms One (intracellular) requires taurine transport and depends on its role as an antioxidant, with lipid peroxidation being probably a significant factor. The other (extracellular) is associated with activation of GABAA receptors.
Collapse
Affiliation(s)
- R O Law
- Department of Medical and Social Care Education, University of Leicester, UK.
| |
Collapse
|
15
|
Abstract
The intent-to-treat analyses of all patients in the HEMO trial suggested that increases in dose of dialysis as measured by urea Kt/V were of marginal or no benefit when dialysis was provided in a 3 times/wk schedule. The as-treated analysis in the HEMO trial pointed to markedly increased mortality when the delivered dose decreased even slightly below the targeted dose, evidence of a dose-targeting bias. The intent-to-treat HEMO study results suggested a potential interaction between sex and the dose-mortality relationship, and this also has been found in some cross-sectional studies, the cause of which remains unexplained. Whether dialysis dose should continue to be targeted based on urea distribution volume (V), or targeted to a body size measure that is a lower power of body weight (such as body surface area), remains an open question. The lack of benefit of increasing the dialysis dose in a 3 times/wk setting is more understandable if one looks at measures of equivalent continuous solute removal, such as the standard Kt/V. Differences in standard Kt/V in the 2 dose arms of the HEMO trial, for example, were only about 15%. Without going into removal of very large solutes (eg, beta-2-microglobulin), which is discussed elsewhere in this issue, or protein-bound uremic solutes, the only way to provide significantly more dialysis dose may be to move to more frequent dialysis schedules and/or to very long session lengths. Here, benefit may be related as much to better control of salt and water balance as to better removal of uremic toxins.
Collapse
|