1
|
Marginean CM, Popescu M, Drocas AI, Cazacu SM, Mitrut R, Marginean IC, Iacob GA, Popescu MS, Docea AO, Mitrut P. Gut–Brain Axis, Microbiota and Probiotics—Current Knowledge on Their Role in Irritable Bowel Syndrome: A Review. GASTROINTESTINAL DISORDERS 2023; 5:517-535. [DOI: 10.3390/gidisord5040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a common digestive disorder with a significant impact on both individuals and society in terms of quality of life and healthcare costs. A growing body of research has identified various communication pathways between the microbiota and the brain in relation to motility disorders, with the gut–brain axis being key to the pathogenesis of IBS. Multiple factors contribute to the pathogenetic pathways in IBS, including immune mechanisms, psychosocial factors, increased oxidative stress and pro-inflammatory cytokine release, as well as genetic and hormonal factors. Increased permeability of the normal intestinal barrier allows bacterial products to access the lamina propria, providing a mechanism for perpetuating chronic inflammation and characteristic symptoms. The microbiota influences inflammatory processes in IBS by altering the balance between pro-inflammatory factors and host defence. Probiotics modulate the pathophysiological mechanisms involved in IBS by influencing the composition of the microbiota and improving intestinal motility disorders, visceral hypersensitivity, immune function of the intestinal epithelium, metabolic processes in the intestinal lumen, dysfunction of the microbiota-GBA, and are recognised as effective and safe in IBS therapy. Our study aimed to provide a comprehensive overview of the relationship between the gut–brain axis, microbiota, and IBS, based on current information.
Collapse
Affiliation(s)
- Cristina Maria Marginean
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andrei Ioan Drocas
- Department of Urology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sergiu Marian Cazacu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, 050098 Bucharest, Romania
| | | | - George Alexandru Iacob
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marian Sorin Popescu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Paul Mitrut
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
2
|
Khasanov R, Svoboda D, Tapia-Laliena MÁ, Kohl M, Maas-Omlor S, Hagl CI, Wessel LM, Schäfer KH. Muscle hypertrophy and neuroplasticity in the small bowel in short bowel syndrome. Histochem Cell Biol 2023; 160:391-405. [PMID: 37395792 PMCID: PMC10624713 DOI: 10.1007/s00418-023-02214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following SBS, muscle tissue increases significantly in both parts of the small bowel, i.e., jejunum and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel with SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus had risen by more than twofold. Our findings suggest that the ENS is tightly connected to changes in intestinal muscle layers and is critically involved in the process of intestinal adaptation to SBS.
Collapse
Affiliation(s)
- Rasul Khasanov
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Daniel Svoboda
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Martina Kohl
- Department of Pediatric and Adolescent Medicine, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Silke Maas-Omlor
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Cornelia Irene Hagl
- Carl Remigius Medical School, Charles de Gaulle Str. 2, 81737, Munich, Germany
| | - Lucas M Wessel
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| |
Collapse
|
3
|
Traserra S, Casabella-Ramón S, Vergara P, Jimenez M. E. coli infection disrupts the epithelial barrier and activates intrinsic neurosecretory reflexes in the pig colon. Front Physiol 2023; 14:1170822. [PMID: 37334046 PMCID: PMC10272729 DOI: 10.3389/fphys.2023.1170822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
This study aims to assess the barrier integrity and possible activation of enteric neural pathways associated with secretion and motility in the pig colon induced by an enterotoxigenic Escherichia coli (ETEC) challenge. 50 Danbred male piglets were used for this study. 16 were challenged with an oral dose of the ETEC strain F4+ 1.5 × 109 colony-forming unit. Colonic samples were studied 4- and 9-days post-challenge using both a muscle bath and Ussing chamber. Colonic mast cells were stained with methylene blue. In control animals, electrical field stimulation induced neurosecretory responses that were abolished by tetrodotoxin (10-6M) and reduced by the combination of atropine (10-4M) and α-chymotrypsin (10U/mL). Exogenous addition of carbachol, vasoactive intestinal peptide, forskolin, 5-HT, nicotine, and histamine produced epithelial Cl- secretion. At day 4 post-challenge, ETEC increased the colonic permeability. The basal electrogenic ion transport remained increased until day 9 post-challenge and was decreased by tetrodotoxin (10-6M), atropine (10-4M), hexamethonium (10-5M), and ondansetron (10-5M). In the muscle, electrical field stimulation produced frequency-dependent contractile responses that were abolished with tetrodotoxin (10-6M) and atropine (10-6M). Electrical field stimulation and carbachol responses were not altered in ETEC animals in comparison with control animals at day 9 post-challenge. An increase in mast cells, stained with methylene blue, was observed in the mucosa and submucosa but not in the muscle layer of ETEC-infected animals on day 9 post-challenge. ETEC increased the response of intrinsic secretory reflexes and produced an impairment of the colonic barrier that was restored on day 9 post-challenge but did not modify neuromuscular function.
Collapse
Affiliation(s)
- Sara Traserra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Casabella-Ramón
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patri Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcel Jimenez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepaticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
5
|
Rodriguez GM, Gater DR. Neurogenic Bowel and Management after Spinal Cord Injury: A Narrative Review. J Pers Med 2022; 12:1141. [PMID: 35887638 PMCID: PMC9324073 DOI: 10.3390/jpm12071141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
People with spinal cord injury (SCI) suffer from the sequela of neurogenic bowel and its disabling complications primarily constipation, fecal incontinence, and gastrointestinal (GI) symptoms. Neurogenic bowel is a functional bowel disorder with a spectrum of defecatory disorders as well as colonic and gastrointestinal motility dysfunction. This manuscript will review the anatomy and physiology of gastrointestinal innervation, as well as the pathophysiology associated with SCI. It will provide essential information on the recent guidelines for neurogenic bowel assessment and medical management. This will allow medical providers to partner with their patients to develop an individualized bowel plan utilizing a combination of various pharmacological, mechanical and surgical interventions that prevent complications and ensure successful management and compliance. For people with SCI and neurogenic bowel dysfunction, the fundamental goal is to maintain health and well-being, promote a good quality of life and support active, fulfilled lives in their homes and communities.
Collapse
Affiliation(s)
- Gianna M. Rodriguez
- Department of Physical Medicine and Rehabilitation, University of Michigan College of Medicine, Ann Arbor, MI 48108, USA
| | - David R. Gater
- Department of Physical Medicine and Rehabilitation, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
7
|
Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol 2022; 322:G405-G420. [PMID: 35170355 PMCID: PMC8917926 DOI: 10.1152/ajpgi.00316.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.
Collapse
Affiliation(s)
- Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Kim E Barrett
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
8
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
9
|
Deidda G, Biazzo M. Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front Neurosci 2021; 15:753915. [PMID: 34712115 PMCID: PMC8545893 DOI: 10.3389/fnins.2021.753915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain physiological functions or pathological dysfunctions do surely depend on the activity of both neuronal and non-neuronal populations. Nevertheless, over the last decades, compelling and fast accumulating evidence showed that the brain is not alone. Indeed, the so-called "gut brain," composed of the microbial populations living in the gut, forms a symbiotic superorganism weighing as the human brain and strongly communicating with the latter via the gut-brain axis. The gut brain does exert a control on brain (dys)functions and it will eventually become a promising valuable therapeutic target for a number of brain pathologies. In the present review, we will first describe the role of gut microbiota in normal brain physiology from neurodevelopment till adulthood, and thereafter we will discuss evidence from the literature showing how gut microbiota alterations are a signature in a number of brain pathologies ranging from neurodevelopmental to neurodegenerative disorders, and how pre/probiotic supplement interventions aimed to correct the altered dysbiosis in pathological conditions may represent a valuable future therapeutic strategy.
Collapse
Affiliation(s)
- Gabriele Deidda
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Borah S, Sarkar P, Sharma HK. Zederone Improves the Fecal Microbial Profile in Dementia Induced Rat Model: A First Report. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 21:335-342. [PMID: 34455974 DOI: 10.2174/1871527320666210827114227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/27/2020] [Accepted: 04/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dementia correlates with Alzheimer's disease, Parkinson's disease, frontotemporal and cerebrovascular diseases. There are supporting shreds of evidence on the pharmacological activity of Curcuma caesia (Zingiberaceae family) for its antioxidant, antidepressant, analgesic, anticonvulsant, and anti-acetylcholinesterase effect. OBJECTIVE This study aims to analyze the fecal microbial profile in Zederone treated demented rat model. METHOD In our study, isolation and characterization of Zederone were carried out from Curcuma caesia rhizomes, followed by estimation of its memory-enhancing effect on Aluminium-induced demented rat, which was evaluated by behavioural study on radial 8 arm maze. Moreover the detection of amyloid plaque formation was carried out using fluorescent microscopy of the congo red-stained rat brain tissues of the cerebral neocortex region. This study included eighteen female Wistar Albino rats that were divided into three groups that consisted of six rats in each group. The study of fecal microbial profile by metagenomic DNA extraction followed by next-generation sequencing was carried out to establish the correlation between gut microbes and amyloid plaques in dementia. RESULTS Zederone could be characterized as pale yellow colored, needle-shaped crystals with 96.57% purity. This compound at 10 mg/kg body weight showed cognition improving capacity (p ≤ 0.0001) with a reduction of accumulated amyloid plaques that were detected in the demented group in fluorescence microscope and fecal microbiome study divulged an increased shift towards Lactobacillus genera in the treated group from Bacteroides in the demented group. CONCLUSION This sesquiterpenoid compound would assist in the modulation of gut bacterial dysbiosis and act as a better therapeutic drug for dementia and other neurological disorders.
Collapse
Affiliation(s)
- Sudarshana Borah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam-786004. India
| | - Priyanka Sarkar
- Wellcome trust- DBT (India Alliance) Lab, Asian Healthcare Foundation, Asian Institute of Gastroenterology, Hyderabad-500032. India
| | - Hemanta Kumar Sharma
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam-786004. India
| |
Collapse
|
11
|
Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest 2021; 131:143777. [PMID: 34128471 PMCID: PMC8203445 DOI: 10.1172/jci143777] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a chronic and progressive disease, and management requires an understanding of both the primary neurological injury and the secondary sequelae that affect peripheral organs, including the gastrointestinal (GI) tract. The brain-gut axis is composed of bidirectional pathways through which TBI-induced neuroinflammation and neurodegeneration impact gut function. The resulting TBI-induced dysautonomia and systemic inflammation contribute to the secondary GI events, including dysmotility and increased mucosal permeability. These effects shape, and are shaped by, changes in microbiota composition and activation of resident and recruited immune cells. Microbial products and immune cell mediators in turn modulate brain-gut activity. Importantly, secondary enteric inflammatory challenges prolong systemic inflammation and worsen TBI-induced neuropathology and neurobehavioral deficits. The importance of brain-gut communication in maintaining GI homeostasis highlights it as a viable therapeutic target for TBI. Currently, treatments directed toward dysautonomia, dysbiosis, and/or systemic inflammation offer the most promise.
Collapse
Affiliation(s)
- Marie Hanscom
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J. Loane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Terez Shea-Donohue
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Lv T, Ye M, Luo F, Hu B, Wang A, Chen J, Yan J, He Z, Chen F, Qian C, Zhang J, Liu Z, Ding Z. Probiotics treatment improves cognitive impairment in patients and animals: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 120:159-172. [PMID: 33157148 DOI: 10.1016/j.neubiorev.2020.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
Abstract
The gut-brain axis has received considerable attention in recent years, and the "psychobiotics" concept indicates that probiotics have a potential positive effect on cognitive function. Therefore, the aim of this study was to quantitatively evaluate the influence of probiotics on cognition. We conducted a random-eff ;ects meta-analysis of 7 controlled clinical trials and 11 animals studies to evaluate the eff ;ects of probiotics on cognitive function. Probiotics supplementation enhanced cognitive function in both human (0.24 [0.05-0.42]; I2 = 0 %) and animal studies (0.90 [0.47-1.34]; I2 = 74 %). Subgroup analyses indicated that the effects of probiotics on cognitively impaired individuals (0.25 [0.05-0.45]; I2 = 0 %) were greater than those on healthy ones (0.15 [-0.30 to 0.60]; I2 = 0 %). Furthermore, compared with a multiple-probiotic supplement, a single strain of probiotics was more effective in humans. The meta-analysis provided some suggestions for probiotics intervention and tended to support a customized approach for different individuals to ameliorate cognitive disorders. Future additional clinical trials are necessary to evaluate therapeutic effect and influencing factors.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Fangyi Luo
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Baiqi Hu
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Anzhe Wang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiaqi Chen
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Junwei Yan
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Ziyi He
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Feng Chen
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Chao Qian
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Jian Zhang
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China
| | - Zheng Liu
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China; Laboratory of Forensic Toxicology, Judicial Identification Center of Shaoxing University, Shaoxing, Zhejiang, China.
| | - Zhinan Ding
- Department of Behavioral Neurosciences, Science Research Center of Medical School, Shaoxing University, Shaoxing, Zhejiang, China; Laboratory of Forensic Toxicology, Judicial Identification Center of Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
13
|
Sarnelli G, Pesce M, Seguella L, Lu J, Efficie E, Tack J, Elisa De Palma FD, D’Alessandro A, Esposito G. Impaired Duodenal Palmitoylethanolamide Release Underlies Acid-Induced Mast Cell Activation in Functional Dyspepsia. Cell Mol Gastroenterol Hepatol 2020; 11:841-855. [PMID: 33065341 PMCID: PMC7858681 DOI: 10.1016/j.jcmgh.2020.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acid hypersensitivity is claimed to be a symptomatic trigger in functional dyspepsia (FD); however, the neuroimmune pathway(s) and the mediators involved in this process have not been investigated systematically. Palmitoylethanolamide (PEA) is an endogenous compound, able to modulate nociception and inflammation, but its role in FD has not been assessed. METHODS Duodenal biopsy specimens from FD and control subjects, and peroxisome proliferator-activated receptor-α (PPARα) null mice were cultured at a pH of 3.0 and 7.4. Mast cell (MC) number, the release of their mediators, and the expression of transient receptor potential vanilloid receptor (TRPV)1 and TRPV4, were evaluated. All measurements also were performed in the presence of a selective blocker of neuronal action potential (tetradotoxin). FD and control biopsy specimens in acidified medium also were incubated in the presence of different PEA concentrations, alone or combined with a selective PPARα or PPAR-γ antagonist. RESULTS An acid-induced increase in MC density and the release of their mediators were observed in both dyspeptic patients and controls; however, this response was amplified significantly in FD. This effect was mediated by submucosal nerve fibers and up-regulation of TRPV1 and TRPV4 receptors because pretreatment with tetradotoxin significantly reduced MC infiltration. The acid-induced endogenous release of PEA was impaired in FD and its exogenous administration counteracts MC activation and TRPV up-regulation. CONCLUSIONS Duodenal acid exposure initiates a cascade of neuronal-mediated events culminating in MC activation and TRPV overexpression. These phenomena are consequences of an impaired release of endogenous PEA. PEA might be regarded as an attractive therapeutic strategy for the treatment of FD.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, Naples, Italy,United Nations Educational, Scientific and Cultural Organization Chair, University of Naples "Federico II," Naples, Italy,Correspondence Address correspondence to: Giovanni Sarnelli, MD, PhD, Department of Clinical Medicine and Surgery, University of Naples "Federico II," Via Pansini 5 80131, Naples, Italy. fax: (39) 0817463892.
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang City, Liaoning, China
| | | | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Fatima Domenica Elisa De Palma
- Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, Department of Molecular Medicine and Medical Biotechnologies, Naples, Italy
| | | | - Giuseppe Esposito
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Czajkowska M, Całka J. Neurochemistry of Enteric Neurons Following Prolonged Indomethacin Administration in the Porcine Duodenum. Front Pharmacol 2020; 11:564457. [PMID: 33013401 PMCID: PMC7506041 DOI: 10.3389/fphar.2020.564457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal inflammation resulting from prolonged NSAID drugs treatment constitutes a worldwide medical problem. The role of enteric neuroactive substances involved in this process has recently gained attention and neuropeptides produced by the enteric nervous system may play an important role in the modulation of gastrointestinal inflammation. Therefore, the aim of this study was to determine the effect of inflammation caused by indomethacin supplementation on vasoactive intestinal polypeptide (VIP), substance P (SP), neuronal nitric oxide synthase (nNOS), galanin (GAL), pituitary adenylate cyclase-activating polypeptide (PACAP), and cocaine- and amphetamine-regulated transcript peptide (CART) expression in enteric duodenal neurons in domestic pigs. Eight immature pigs of the Pietrain × Duroc race (20 kg of body weight) were used. Control animals (n=4) received empty gelatine capsules. Experimental pigs (n=4) were given indomethacin for 4 weeks, orally 10 mg/kg daily, approximately 1 h before feeding. The animals from both groups were then euthanized. Frozen sections were prepared from the collected duodenum and subjected to double immunofluorescence staining. Primary antibodies against neuronal marker PGP 9.5 and VIP, nNOS, SP, GAL, CART, and PACAP were visualized with Alexa Fluor 488 and 546. Sections were analyzed under an Olympus BX51 fluorescence microscope. Microscopic analysis showed significant increases in the number of nNOS-, VIP-, SP-, GAL-, PACAP-, and CART-immunoreactive ganglionic neurons, in both the myenteric and submucous plexuses of the porcine duodenum. The obtained results show the participation of enteric neurotransmitters in the neuronal duodenal response to indomethacin-induced inflammation.
Collapse
Affiliation(s)
- Marta Czajkowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | | |
Collapse
|
15
|
Dal Ben D, Antonioli L, Lambertucci C, Spinaci A, Fornai M, D'Antongiovanni V, Pellegrini C, Blandizzi C, Volpini R. Approaches for designing and discovering purinergic drugs for gastrointestinal diseases. Expert Opin Drug Discov 2020; 15:687-703. [PMID: 32228110 DOI: 10.1080/17460441.2020.1743673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Purines finely modulate physiological motor, secretory, and sensory functions in the gastrointestinal tract. Their activity is mediated by the purinergic signaling machinery, including receptors and enzymes regulating their synthesis, release, and degradation. Several gastrointestinal dysfunctions are characterized by alterations affecting the purinergic system. AREAS COVERED The authors provide an overview on the purinergic receptor signaling machinery, the molecules and proteins involved, and a summary of medicinal chemistry efforts aimed at developing novel compounds able to modulate the activity of each player involved in this machinery. The involvement of purinergic signaling in gastrointestinal motor, secretory, and sensory functions and dysfunctions, and the potential therapeutic applications of purinergic signaling modulators, are then described. EXPERT OPINION A number of preclinical and clinical studies demonstrate that the pharmacological manipulation of purinergic signaling represents a viable way to counteract several gastrointestinal diseases. At present, the paucity of purinergic therapies is related to the lack of receptor-subtype-specific agonists and antagonists that are effective in vivo. In this regard, the development of novel therapeutic strategies should be focused to include tools able to control the P1 and P2 receptor expression as well as modulators of the breakdown or transport of purines.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | | | - Corrado Blandizzi
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Camerino, Italy
| |
Collapse
|
16
|
Are Enterocolic Mucosal Mast Cell Aggregates Clinically Relevant in Patients Without Suspected or Established Systemic Mastocytosis? Am J Surg Pathol 2019; 42:1390-1395. [PMID: 30001235 DOI: 10.1097/pas.0000000000001126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The World Health Organization considers enterocolic mast cell aggregates with atypical morphologic and/or immunohistochemical features diagnostic of systemic mastocytosis mostly because published data are heavily influenced by inclusion of symptomatic patients with systemic disease. We occasionally encounter atypical mast cells in gastrointestinal biopsy samples from patients in whom systemic mastocytosis is not suspected. The aim of this study was to describe the clinicopathologic features and implications of atypical enterocolic mast cell aggregates in 16 patients without suspected or established systemic mastocytosis. Mast cell infiltrates were assessed for morphology, distribution, associated inflammatory cells, and CD117 and CD25 immunoexpression. Most (63%) patients were women; 15 underwent endoscopic examination for screening (n=7), abdominal pain (n=3), diarrhea (n=3), changing bowel habits (n=1), and dysphagia (n=1). Mast cell aggregates were detected in 1 colectomy specimen for cancer. Colonic involvement was most common (n=14) and resulted in polypoid (n=10), edematous (n=2), or normal (n=3) mucosae. All cases featured CD117/CD25, ovoid mast cells concentrated beneath the epithelium, or diffusely involving the entire mucosal thickness. Eosinophils were numerous and obscured mast cells in 63% of cases. Spontaneous resolution of symptoms occurred in all patients (mean follow-up: 54 mo), and asymptomatic patients remained symptom-free (mean follow-up: 17 mo). Of 4 patients evaluated for systemic mastocytosis, 3 had negative bone marrow biopsies and one lacked a KIT mutation in peripheral blood. We conclude that, although careful clinical assessment of patients with incidental enterocolic mast cell aggregates is reasonable, labeling them with a systemic hematologic disorder may not be justified.
Collapse
|
17
|
Mosińska P, Martín-Ruiz M, González A, López-Miranda V, Herradón E, Uranga JA, Vera G, Sánchez-Yáñez A, Martín-Fontelles MI, Fichna J, Abalo R. Changes in the diet composition of fatty acids and fiber affect the lower gastrointestinal motility but have no impact on cardiovascular parameters: In vivo and in vitro studies. Neurogastroenterol Motil 2019; 31:e13651. [PMID: 31145538 DOI: 10.1111/nmo.13651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/30/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Food and diet are central issues for proper functioning of the cardiovascular (CV) system and gastrointestinal (GI) tract. We hypothesize that different types of dietary FAs affect CV parameters as well as GI motor function and visceral sensitivity. METHODS Male Wistar rats were fed with control diet (CTRL), diet supplemented with 7% soybean oil (SOY), SOY + 3.5% virgin coconut oil (COCO), and SOY + 3.5% evening primrose oil (EP) for 4 weeks. The content of insoluble fiber in CTRL was higher than in SOY, COCO, or EP. Body weight gain and food/water intake were measured. At day 28, biometric, biochemical, CV parameters, GI motor function (X-ray and colon bead expulsion test), and visceral sensitivity were evaluated. Changes in propulsive colonic activity were determined in vitro. The colon and adipose tissue were histologically studied; the number of mast cells (MCs) in the colon was calculated. RESULTS SOY, COCO, and EP had increased body weight gain but decreased food intake vs CTRL. Water consumption, biometric, biochemical, and CV parameters were comparable between groups. SOY increased the sensitivity to colonic distention. All groups maintained regular propulsive neurogenic contractions; EP delayed colonic motility (P < 0.01). SOY, COCO, and EP displayed decreased size of the cecum, lower number and size of fecal pellets, and higher infiltration of MCs to the colon (P < 0.001). CONCLUSIONS AND INFERENCES Dietary FAs supplementation and lower intake of insoluble fiber can induce changes in the motility of the lower GI tract, in vivo and in vitro, but CV function and visceral sensitivity are not generally affected.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Visitación López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Esperanza Herradón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Gema Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Adrián Sánchez-Yáñez
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Mª Isabel Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Raquel Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| |
Collapse
|
18
|
Indrio F, Dargenio VN, Giordano P, Francavilla R. Preventing and Treating Colic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1125:49-56. [PMID: 30656551 DOI: 10.1007/5584_2018_315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Colic is a common and distressing functional gastrointestinal disorder during infancy. It is a behavioral phenomenon in infants aged 1-4 months involving prolonged inconsolable crying and agitated status with multifactorial etiology. Colic can be considered as a benign, self-limited process because the baby normally grows and feeds even with transient irritable mood. Nevertheless, infantile colic is a common difficulty causing anxiety during parenthood and a recurrent reason for them to seek medical help, especially if it is the first child. The causes of colic can be classified as non-gastrointestinal or gastrointestinal. The former includes altered feeding techniques, modified child-parent relationship, immaturity of central nervous system, behavioral etiology, and maternal smoking or nicotine replacement therapy. Instead, the latter involves inadequate production of lactase enzyme, cow's milk protein intolerance, alteration of intestinal microbiota, gastrointestinal immaturity, or inflammation which causes intestinal hyperperistalsis due to increase in serotonin secretion and motilin receptor expression.Probiotics may play a crucial part in the manipulation of the microbiota. Probiotic administration is likely to maintain intestinal homeostasis through the modulation of permeability and peristalsis, influencing the gut-brain axis and inhibiting hypersensitivity. This is a decisive field in the development of preventive and therapeutic strategies for infantile colic. However, further studies are needed for each specific formulation in order to better characterize pharmacodynamic and pharmacokinetic properties and to evaluate their application as a possible preventive strategy if administered early during infancy against the later development of pain-related FGIDs.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Pediatrics, Section of Gastroenterology and Nutrition, "Aldo Moro" University of Bari, Ospedale Pediatrico Giovanni XXIII, Bari, Italy.
| | - Vanessa Nadia Dargenio
- Department of Pediatrics, Ospedale Pediatrico Giovanni XXIII, "Aldo Moro" University of Bari, Bari, Italy
| | - Paola Giordano
- Department of Pediatrics, Ospedale Pediatrico Giovanni XXIII, "Aldo Moro" University of Bari, Bari, Italy
| | - Ruggiero Francavilla
- Department of Pediatrics, Ospedale Pediatrico Giovanni XXIII, "Aldo Moro" University of Bari, Bari, Italy
| |
Collapse
|
19
|
Tsai JD, Wang IC, Shen TC, Lin CL, Wei CC. A 8-year population-based cohort study of irritable bowel syndrome in childhood with history of atopic dermatitis. J Investig Med 2018; 66:755-761. [DOI: 10.1136/jim-2017-000631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder affecting a large number of people worldwide. Based on the concept of central sensitization, we conducted a population-based cohort analysis to investigate the risk of IBS in children with atopic dermatitis (AD) as one of the first steps in the atopic march. From 2000 to 2007, 1 20 014 children with newly diagnosed AD and 1 20 014 randomly selected non-AD controls were included in the study. By the end of 2008, incidences of IBS in both cohorts and the AD cohort to non-AD cohort hazard ratios (HRs) and CIs were measured. The incidence of IBS during the study period was 1.45-fold greater (95% CI: 1.32 to 1.59) in the AD cohort than in the non-AD cohort (18.8 vs 12.9 per 10 000 person-years). The AD to non-AD HR of IBS was greater for girls (1.60, 95% CI: 1.39 to 1.85) and children≥12 years (1.59, 95% CI: 1.23 to 2.05). The HR of IBS in AD children increased from 0.84 (95% CI: 0.75 to 0.94) for those with ≤3 AD related visits to 16.7 (95% CI: 14.7 to 18.9) for those with >5 visits (P<0.0001, by the trend test). AD children had a greater risk of developing IBS. Further research is needed to clarify the role of allergy in the pathogenesis of IBS.
Collapse
|
20
|
Nimgampalle M, Kuna Y. Anti-Alzheimer Properties of Probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's Disease induced Albino Rats. J Clin Diagn Res 2017; 11:KC01-KC05. [PMID: 28969160 DOI: 10.7860/jcdr/2017/26106.10428] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Alzheimer's disease is a type of dementia, and till now there is no suitable drug available for the complete cure of this disease. Now-a-days Probiotics, Lactobacillus strains play a therapeutic role in cognitive disorders through Gut-Brain Axis communication. AIM The present study was aimed to evaluate the anti-Alzheimer properties of Lactobacillus plantarum MTCC1325 against D-Galactose-induced Alzheimer's disease in albino rats. MATERIALS AND METHODS Healthy rats (48) of wistar strain were divided into four groups viz., Group-I: control rats received saline, Group-II: rats received intraperitoneal injection of D-Galactose (120 mg/kg body weight) throughout experiment, Group-III: initially animals were subjected to D-Galactose injection for six weeks, then followed by simultaneously received both D-Galactose and L. plantarum MTCC1325 (12×108 CFU/ml; 10 ml/kg body weight) for 60 days and Group-IV: rats which were orally administered only with Lactobacillus plantarum MTCC1325 for 60 days. During the experimentation, both morphometric and behavioural aspects were studied. Later we have examined histopathological changes and estimated cholinergic levels in selected brain regions of all experimental groups of rats including control on selected days. RESULTS Morphometric, behavioural changes, ACh levels were significantly decreased and pathological hallmarks such as amyloid plaques and tangles were also observed in AD model group. Treatment of AD-group with L. plantarum MTCC1325 for 60 days, not only ameliorated cognition deficits but also restored ACh and the histopathological features to control group. However, no significant effects have been observed in the group treated with L. plantarum alone. CONCLUSION The study revealed that, L. plantarum MTCC1325 might have anti-Alzheimer properties against D-Galactose induced Alzheimer's disease.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Research Scholar, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Yellamma Kuna
- Professor, Department of Zoology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
21
|
Capannolo A, Viscido A, Sollima L, Marinucci A, Coletti G, Pasetti A, Frieri G, Bassotti G, Villanacci V, Latella G. Mastocytic enterocolitis: Increase of mast cells in the gastrointestinal tract of patients with chronic diarrhea. GASTROENTEROLOGIA Y HEPATOLOGIA 2017; 40:467-470. [PMID: 27436817 DOI: 10.1016/j.gastrohep.2016.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
|
22
|
Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA. Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:193-232. [DOI: 10.1007/5584_2017_61] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Wang Y, Brasseur JG. Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions. Phys Rev E 2017; 95:062412. [PMID: 28709220 DOI: 10.1103/physreve.95.062412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Indexed: 06/07/2023]
Abstract
We evaluate the potential for physiological control of intestinal absorption by the generation of "micromixing layers" (MMLs) induced by coordinated motions of mucosal villi coupled with lumen-scale "macro" eddying motions generated by gut motility. To this end, we apply a three-dimensional (3D) multigrid lattice-Boltzmann model of a lid-driven macroscale cavity flow with microscale fingerlike protuberances at the lower surface. Integrated with a previous 2D study of leaflike villi, we generalize to 3D the 2D mechanisms found there to enhance nutrient absorption by controlled villi motility. In three dimensions, increased lateral spacing within villi within groups that move axially with the macroeddy reduces MML strength and absorptive enhancement relative to two dimensions. However, lateral villi motions create helical 3D particle trajectories that enhance absorption rate to the level of axially moving 2D leaflike villi. The 3D enhancements are associated with interesting fundamental adjustments to 2D micro-macro-motility coordination mechanisms and imply a refined potential for physiological or pharmaceutical control of intestinal absorption.
Collapse
Affiliation(s)
- Yanxing Wang
- School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - James G Brasseur
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
24
|
Luo Y, Feng C, Wu J, Wu Y, Liu D, Wu J, Dai F, Zhang J. P2Y1, P2Y2, and TRPV1 Receptors Are Increased in Diarrhea-Predominant Irritable Bowel Syndrome and P2Y2 Correlates with Abdominal Pain. Dig Dis Sci 2016; 61:2878-2886. [PMID: 27250983 DOI: 10.1007/s10620-016-4211-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Previous studies indicated that P2Y1 and P2Y2 receptors, which are widely distributed in the enteric nervous system, are related to pain, while TRPV1 may contribute to visceral pain and hypersensitivity states in irritable bowel syndrome (IBS). Other studies showed that ATP activates the capsaicin-sensitive TRPV1 channel via P2Y receptors. AIM To detect the expression of P2Y1, P2Y2, and TRPV1 receptors in diarrhea-predominant IBS (IBS-D) patients and analyze any correlations with abdominal pain and to investigate interactions between P2Y receptors and the TRPV1 receptor in IBS-D patients. METHODS Rectosigmoid biopsies were collected from patients with IBS-D (n = 36) and healthy controls (n = 15). Abdominal pain was scored using a 10-cm visual analogue scale. Expression levels of P2Y1, P2Y2, and TRPV1 receptors in rectosigmoid biopsies were determined by real-time PCR and double-labeling immunofluorescence with specific antibodies. RESULTS Both mRNA and protein expression levels of P2Y1, P2Y2, and TRPV1 receptors were increased in IBS-D compared with controls. Of these receptors, P2Y2 expression correlated with the maximum pain scores (p = 0.02, r = 0.63, Spearman correlation) in IBS-D patients. However, no relationships were detected between P2Y receptors and the TRPV1 receptor. CONCLUSION In the present study, we identified an increased expression of P2Y1 and P2Y2 receptors in the rectosigmoid mucosa of IBS-D patients, and P2Y2 correlated with abdominal pain. Furthermore, we identified an increase in TRPV1 expression; however, there were no correlations found between P2Y receptors and the TRPV1 receptor.
Collapse
Affiliation(s)
- Yumei Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Cheng Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Jing Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Yongxing Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shanxi, China
| | - Dong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Jie Wu
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Fei Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China
| | - Jun Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xi Wu Road, Xi'an, 710004, Shanxi, China.
| |
Collapse
|
25
|
Seo H, Park SH, Byeon JS, Woo CG, Hong SM, Chang K, So H, Kwak M, Kim WS, Lee JM, Yang DH, Kim KJ, Ye BD, Myung SJ, Yang SK. Chronic intractable diarrhea caused by gastrointestinal mastocytosis. Intest Res 2016; 14:280-4. [PMID: 27433151 PMCID: PMC4945533 DOI: 10.5217/ir.2016.14.3.280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/05/2015] [Accepted: 06/22/2015] [Indexed: 11/14/2022] Open
Abstract
As mast cells have been highlighted in the pathogenesis of diarrhea-predominant irritable bowel syndrome, a new term "mastocytic enterocolitis" was suggested by Jakate and colleagues to describe an increase in mucosal mast cells in patients with chronic intractable diarrhea and favorable response to treatment with antihistamines. Although it is not an established disease entity, two cases have been reported in the English medical literature. Here, for the first time in Asia, we report another case of chronic intractable diarrhea caused by gastrointestinal mastocytosis. The patient was a 70-year-old male with chronic intractable diarrhea for 3 months; the cause of the diarrhea remained obscure even after exhaustive evaluation. However, biopsy specimens from the jejunum were found to have increased mast cell infiltration, and the patient was successfully treated with antihistamines.
Collapse
Affiliation(s)
- Hyungil Seo
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Gok Woo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiju Chang
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hoonsub So
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minseob Kwak
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wan Soo Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong-Mi Lee
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung-Jo Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Jae Myung
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Lázaro CP, Pondé MP, Rodrigues LEA. Opioid peptides and gastrointestinal symptoms in autism spectrum disorders. ACTA ACUST UNITED AC 2016; 38:243-6. [PMID: 27304256 PMCID: PMC7194264 DOI: 10.1590/1516-4446-2015-1777] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/24/2016] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASDs) are characterized by deficits in the individual's ability to socialize, communicate, and use the imagination, in addition to stereotyped behaviors. These disorders have a heterogenous phenotype, both in relation to symptoms and regarding severity. Organic problems related to the gastrointestinal tract are often associated with ASD, including dysbiosis, inflammatory bowel disease, exocrine pancreatic insufficiency, celiac disease, indigestion, malabsorption, food intolerance, and food allergies, leading to vitamin deficiencies and malnutrition. In an attempt to explain the pathophysiology involved in autism, a theory founded on opioid excess has been the focus of various investigations, since it partially explains the symptomatology of the disorder. Another hypothesis has been put forward whereby the probable triggers of ASDs would be related to the presence of bacteria in the bowel, oxidative stress, and intestinal permeability. The present update reviews these hypotheses.
Collapse
Affiliation(s)
- Cristiane P Lázaro
- Escola Bahiana de Medicina e Saúde Pública (BAHIANA), Salvador, BA, Brazil.,Laboratório Interdisciplinar de Pesquisa em Autismo (LABIRINTO), Salvador, BA, Brazil
| | - Milena P Pondé
- Escola Bahiana de Medicina e Saúde Pública (BAHIANA), Salvador, BA, Brazil.,Laboratório Interdisciplinar de Pesquisa em Autismo (LABIRINTO), Salvador, BA, Brazil
| | - Luiz E A Rodrigues
- Escola Bahiana de Medicina e Saúde Pública (BAHIANA), Salvador, BA, Brazil.,Laboratório Interdisciplinar de Pesquisa em Autismo (LABIRINTO), Salvador, BA, Brazil.,Departamento de Bioquímica, Laboratório de Pesquisas Básicas, BAHIANA, Salvador, BA, Brazil
| |
Collapse
|
27
|
Loewendorf AI, Matynia A, Saribekyan H, Gross N, Csete M, Harrington M. Roads Less Traveled: Sexual Dimorphism and Mast Cell Contributions to Migraine Pathology. Front Immunol 2016; 7:140. [PMID: 27148260 PMCID: PMC4836167 DOI: 10.3389/fimmu.2016.00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/31/2016] [Indexed: 12/30/2022] Open
Abstract
Migraine is a common, little understood, and debilitating disease. It is much more prominent in women than in men (~2/3 are women) but the reasons for female preponderance are not clear. Migraineurs frequently experience severe comorbidities, such as allergies, depression, irritable bowel syndrome, and others; many of the comorbidities are more common in females. Current treatments for migraine are not gender specific, and rarely are migraine and its comorbidities considered and treated by the same specialist. Thus, migraine treatments represent a huge unmet medical need, which will only be addressed with greater understanding of its underlying pathophysiology. We discuss the current knowledge about sex differences in migraine and its comorbidities, and focus on the potential role of mast cells (MCs) in both. Sex-based differences in pain recognition and drug responses, fluid balance, and the blood–brain barrier are recognized but their impact on migraine is not well studied. Furthermore, MCs are well recognized for their prominent role in allergies but much less is known about their contributions to pain pathways in general and migraine specifically. MC-neuron bidirectional communication uniquely positions these cells as potential initiators and/or perpetuators of pain. MCs can secrete nociceptor sensitizing and activating agents, such as serotonin, prostaglandins, histamine, and proteolytic enzymes that can also activate the pain-mediating transient receptor potential vanilloid channels. MCs express receptors for both estrogen and progesterone that induce degranulation upon binding. Furthermore, environmental estrogens, such as Bisphenol A, activate MCs in preclinical models but their impact on pain pathways or migraine is understudied. We hope that this discussion will encourage scientists and physicians alike to bridge the knowledge gaps linking sex, MCs, and migraine to develop better, more comprehensive treatments for migraine patients.
Collapse
Affiliation(s)
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Noah Gross
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | - Marie Csete
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | | |
Collapse
|
28
|
Wood JD. Enteric Neurobiology: Discoveries and Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:175-91. [PMID: 27379645 DOI: 10.1007/978-3-319-27592-5_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Discovery and documentation of noncholinergic-nonadrenergic neurotransmission in the enteric nervous system started a revolution in mechanisms of neural control of the digestive tract that continues into a twenty-first century era of translational gastroenterology, which is now firmly embedded in the term, neurogastroenterology. This chapter, on Enteric Neurobiology: Discoveries and Directions, tracks the step-by-step advances in enteric neuronal electrophysiology and synaptic behavior and progresses to the higher order functions of central pattern generators, hard wired synaptic circuits and libraries of neural programs in the brain-in-the-gut that underlie the several different patterns of motility and secretory behaviors that occur in the specialized, serially-connected compartments extending from the esophagus to the anus.
Collapse
Affiliation(s)
- Jackie D Wood
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH, 43210-1218, USA.
| |
Collapse
|
29
|
Shah N, Foong RXM, Borrelli O, Volonaki E, Dziubak R, Meyer R, Elawad M, Sebire NJ. Histological findings in infants with Gastrointestinal food allergy are associated with specific gastrointestinal symptoms; retrospective review from a tertiary centre. BMC Clin Pathol 2015; 15:12. [PMID: 26085814 PMCID: PMC4469460 DOI: 10.1186/s12907-015-0012-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/05/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gastrointestinal food allergy (GIFA) occurs in 2 to 4 % of children, the majority of whom are infants (<1 year of age). Although endoscopy is considered the gold standard for diagnosing GIFA, it is invasive and requires general anaesthesia. Therefore, we aimed to investigate whether in infants with GIFA, gastrointestinal symptoms predict histological findings in order to help optimise the care pathway for such patients. METHODS All infants <1 year of age over a 20 year period who underwent an endoscopic procedure gastroscopy or colonoscopy for GIFA were evaluated for the study. Symptoms at presentation were reviewed and compared with mucosal biopsy histological findings, which were initially broadly classified for study purposes as "Normal" or "Abnormal" (defined as the presence of any mucosal inflammation by the reporting pathologist at the time of biopsy). RESULTS Of a total of 1319 cases, 544 fitted the inclusion criteria. 62 % of mucosal biopsy series in this group were reported as abnormal. Infants presenting with diarrhoea, rectal (PR) bleeding, irritability and urticaria in any combination had a probability >85 % (OR > 5.67) of having abnormal histological findings compared to those without. Those with isolated PR bleeding or diarrhoea were associated with 74 % and 68 % probability (OR: 2.85 and 2.13) of an abnormal biopsy, respectively. Conversely, children presenting with faltering growth or reflux/vomiting showed any abnormal mucosal histology in only 50.8 % and 45.3 % (OR: 1.04 and 0.82) respectively. CONCLUSIONS Food allergy may occur in very young children and is difficult to diagnose. Since endoscopy in infants has significant risks, stratification of decision-making may be aided by symptoms. At least one mucosal biopsy demonstrated an abnormal finding in around half of cases in this selected population. Infants presenting with diarrhoea, PR bleeding, urticaria and irritability are most likely to demonstrate abnormal histological findings.
Collapse
Affiliation(s)
- Neil Shah
- Paediatric Gastroenterology Department, Great Ormond Street Hospital, London, WC1N 3JH United Kingdom.,Institute of Child Health/UCL, London, WC1N 1EH UK
| | - Ru-Xin Melanie Foong
- Paediatric Gastroenterology Department, Great Ormond Street Hospital, London, WC1N 3JH United Kingdom
| | - Osvaldo Borrelli
- Paediatric Gastroenterology Department, Great Ormond Street Hospital, London, WC1N 3JH United Kingdom
| | - Eleni Volonaki
- Paediatric Gastroenterology Department, Great Ormond Street Hospital, London, WC1N 3JH United Kingdom
| | - Robert Dziubak
- Paediatric Gastroenterology Department, Great Ormond Street Hospital, London, WC1N 3JH United Kingdom
| | - Rosan Meyer
- Paediatric Gastroenterology Department, Great Ormond Street Hospital, London, WC1N 3JH United Kingdom
| | - Mamoun Elawad
- Paediatric Gastroenterology Department, Great Ormond Street Hospital, London, WC1N 3JH United Kingdom
| | - Neil J Sebire
- Histopathology Department, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
30
|
Peters EG, De Jonge WJ, Smeets BJJ, Luyer MDP. The contribution of mast cells to postoperative ileus in experimental and clinical studies. Neurogastroenterol Motil 2015; 27:743-9. [PMID: 26011782 DOI: 10.1111/nmo.12579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
The persistent phase of postoperative ileus (POI) is mediated by inflammatory activation of the resident myeloid immune cell population in the gut wall, likely elicited by neurogenic activation. Mast cells are thought to play a critical role in this inflammatory response and involvement of mast cells in POI has been investigated and described thoroughly in experimental studies. Intestinal manipulation (IM) leads to degranulation of mast cells, resulting in an increase in mast cell proteases in peritoneal fluid and gut tissue. The inflammatory infiltrate formed in the intestinal wall thereby impairs gastrointestinal motility. In the clinical study by Berdun et al., the experimentally known association between mast cell degranulation and delayed motility is shown in a clinical setting. These findings are important and open up therapeutic opportunities to reduce or prevent POI. In this mini-review, the role of mast cells in POI is discussed. Furthermore, an update is given on the involvement of the inflammatory response in POI and potential therapeutic strategies.
Collapse
Affiliation(s)
- E G Peters
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands.,Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands
| | - W J De Jonge
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology, Academic Medical Center, Amsterdam, The Netherlands
| | - B J J Smeets
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| | - M D P Luyer
- Department of Surgery, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
31
|
Enteric purinergic signaling: Shaping the "brain in the gut". Neuropharmacology 2015; 95:477-8. [PMID: 25981956 DOI: 10.1016/j.neuropharm.2015.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022]
|
32
|
Di Liddo R, Bertalot T, Schuster A, Schrenk S, Tasso A, Zanusso I, Conconi MT, Schäfer KH. Anti-inflammatory activity of Wnt signaling in enteric nervous system: in vitro preliminary evidences in rat primary cultures. J Neuroinflammation 2015; 12:23. [PMID: 25644719 PMCID: PMC4332439 DOI: 10.1186/s12974-015-0248-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/14/2015] [Indexed: 01/22/2023] Open
Abstract
Background In the last years, Wnt signaling was demonstrated to regulate inflammatory processes. In particular, an increased expression of Wnts and Frizzled receptors was reported in inflammatory bowel disease (IBD) and ulcerative colitis to exert both anti- and pro-inflammatory functions regulating the intestinal activated nuclear factor κB (NF-кB), TNFa release, and IL10 expression. Methods To investigate the role of Wnt pathway in the response of the enteric nervous system (ENS) to inflammation, neurons and glial cells from rat myenteric plexus were treated with exogenous Wnt3a and/or LPS with or without supporting neurotrophic factors such as basic fibroblast growth factor (bFGF), epithelial growth factor (EGF), and glial cell-derived neurotrophic factor (GDNF). The immunophenotypical characterization by flow cytometry and the protein and gene expression analysis by qPCR and Western blotting were carried out. Results Flow cytometry and immunofluorescence staining evidenced that enteric neurons coexpressed Frizzled 9 and toll-like receptor 4 (TLR4) while glial cells were immunoreactive to TLR4 and Wnt3a suggesting that canonical Wnt signaling is active in ENS. Under in vitro LPS treatment, Western blot analysis demonstrated an active cross talk between canonical Wnt signaling and NF-кB pathway that is essential to negatively control enteric neuronal response to inflammatory stimuli. Upon costimulation with LPS and Wnt3a, a significant anti-inflammatory activity was detected by RT-PCR based on an increased IL10 expression and a downregulation of pro-inflammatory cytokines TNFa, IL1B, and interleukin 6 (IL6). When the availability of neurotrophic factors in ENS cultures was abolished, a changed cell reactivity by Wnt signaling was observed at basal conditions and after LPS treatment. Conclusions The results of this study suggested the existence of neuronal surveillance through FZD9 and Wnt3a in enteric myenteric plexus. Moreover, experimental evidences were provided to clarify the correlation among soluble trophic factors, Wnt signaling, and anti-inflammatory protection of ENS.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Anne Schuster
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| | - Sandra Schrenk
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| | - Alessia Tasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Ilenia Zanusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy.
| | - Karl Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.
| |
Collapse
|
33
|
Deiteren A, De Man JG, Pelckmans PA, De Winter BY. Histamine H₄ receptors in the gastrointestinal tract. Br J Pharmacol 2015; 172:1165-78. [PMID: 25363289 DOI: 10.1111/bph.12989] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/28/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Histamine is a well-established mediator involved in a variety of physiological and pathophysiological mechanisms and exerts its effect through activation of four histamine receptors (H1-H₄). The histamine H₄ receptor is the newest member of this histamine receptor family, and is expressed throughout the gastrointestinal tract as well as in the liver, pancreas and bile ducts. Functional studies using a combination of selective and non-selective H₄ receptor ligands have rapidly increased our knowledge of H₄ receptor involvement in gastrointestinal processes both under physiological conditions and in models of disease. Strong evidence points towards a role for H₄ receptors in the modulation of immune-mediated responses in gut inflammation such as in colitis, ischaemia/reperfusion injury, radiation-induced enteropathy and allergic gut reactions. In addition, data have emerged implicating H₄ receptors in gastrointestinal cancerogenesis, sensory signalling, and visceral pain as well as in gastric ulceration. These studies highlight the potential of H₄ receptor targeted therapy in the treatment of various gastrointestinal disorders such as inflammatory bowel disease, irritable bowel syndrome and cancer.
Collapse
Affiliation(s)
- A Deiteren
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
34
|
DeBruin EJ, Gold M, Lo BC, Snyder K, Cait A, Lasic N, Lopez M, McNagny KM, Hughes MR. Mast cells in human health and disease. Methods Mol Biol 2015; 1220:93-119. [PMID: 25388247 DOI: 10.1007/978-1-4939-1568-2_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.
Collapse
Affiliation(s)
- Erin J DeBruin
- Department of Experimental Medicine, The Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang GD, Wang XY, Liu S, Qu M, Xia Y, Needleman BJ, Mikami DJ, Wood JD. Innervation of enteric mast cells by primary spinal afferents in guinea pig and human small intestine. Am J Physiol Gastrointest Liver Physiol 2014; 307:G719-31. [PMID: 25147231 PMCID: PMC4187066 DOI: 10.1152/ajpgi.00125.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells express the substance P (SP) neurokinin 1 receptor and the calcitonin gene-related peptide (CGRP) receptor in guinea pig and human small intestine. Enzyme-linked immunoassay showed that activation of intramural afferents by antidromic electrical stimulation or by capsaicin released SP and CGRP from human and guinea pig intestinal segments. Electrical stimulation of the afferents evoked slow excitatory postsynaptic potentials (EPSPs) in the enteric nervous system. The slow EPSPs were mediated by tachykinin neurokinin 1 and CGRP receptors. Capsaicin evoked slow EPSP-like responses that were suppressed by antagonists for protease-activated receptor 2. Afferent stimulation evoked slow EPSP-like excitation that was suppressed by mast cell-stabilizing drugs. Histamine and mast cell protease II were released by 1) exposure to SP or CGRP, 2) capsaicin, 3) compound 48/80, 4) elevation of mast cell Ca²⁺ by ionophore A23187, and 5) antidromic electrical stimulation of afferents. The mast cell stabilizers cromolyn and doxantrazole suppressed release of protease II and histamine when evoked by SP, CGRP, capsaicin, A23187, electrical stimulation of afferents, or compound 48/80. Neural blockade by tetrodotoxin prevented mast cell protease II release in response to antidromic electrical stimulation of mesenteric afferents. The results support a hypothesis that afferent innervation of enteric mast cells releases histamine and mast cell protease II, both of which are known to act in a diffuse paracrine manner to influence the behavior of enteric nervous system neurons and to elevate the sensitivity of spinal afferent terminals.
Collapse
Affiliation(s)
- Guo-Du Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Xi-Yu Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Sumei Liu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Meihua Qu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Yun Xia
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; ,2Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Bradley J. Needleman
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dean J. Mikami
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
36
|
Bell A, Althaus M, Diener M. Communication between mast cells and rat submucosal neurons. Pflugers Arch 2014; 467:1809-23. [DOI: 10.1007/s00424-014-1609-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/29/2022]
|
37
|
Isolation, expansion and transplantation of postnatal murine progenitor cells of the enteric nervous system. PLoS One 2014; 9:e97792. [PMID: 24871092 PMCID: PMC4037209 DOI: 10.1371/journal.pone.0097792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/24/2014] [Indexed: 01/17/2023] Open
Abstract
Neural stem or progenitor cells have been proposed to restore gastrointestinal function in patients suffering from congenital or acquired defects of the enteric nervous system. Various, mainly embryonic cell sources have been identified for this purpose. However, immunological and ethical issues make a postnatal cell based therapy desirable. We therefore evaluated and quantified the potential of progenitor cells of the postnatal murine enteric nervous system to give rise to neurons and glial cells in vitro. Electrophysiological analysis and BrdU uptake studies provided direct evidence that generated neurons derive from expanded cells in vitro. Transplantation of isolated and expanded postnatal progenitor cells into the distal colon of adult mice demonstrated cell survival for 12 weeks (end of study). Implanted cells migrated within the gut wall and differentiated into neurons and glial cells, both of which were shown to derive from proliferated cells by BrdU uptake. This study indicates that progenitor cells isolated from the postnatal enteric nervous system might have the potential to serve as a source for a cell based therapy for neurogastrointestinal motility disorders. However, further studies are necessary to provide evidence that the generated cells are capable to positively influence the motility of the diseased gastrointestinal tract.
Collapse
|
38
|
Abstract
The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.
Collapse
|
39
|
Martins PR, Nascimento RD, de Souza Lisboa A, Martinelli PM, d'Ávila Reis D. Neuroimmunopathology of Trypanosoma cruzi-induced megaoesophagus: Is there a role for mast cell proteases? Hum Immunol 2014; 75:302-5. [PMID: 24530752 DOI: 10.1016/j.humimm.2014.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 01/03/2014] [Accepted: 02/04/2014] [Indexed: 01/18/2023]
Abstract
Tryptase and chymase are mast cell (MC)-specific proteases, which influence in the activation of inflammatory cells. In this study, we quantified tryptase- or chymase-expressing MCs in the oesophaguses of Chagas patients, and searched for a correlation between those data with area of nerve fibres that expressed either PGP9.5 (pan-marker) or vasoactive intestinal polypeptide (VIP), which is a neuromediator that has anti-inflammatory activity. Samples from the oesophaguses of 14 individuals Trypanosoma cruzi-infected and from six uninfected individuals were analysed by immunohistochemistry. It was demonstrated that the number of tryptase-IR MCs in infected individuals increased when compared with controls, regardless of whether the individuals had megaoesophagus, whereas the number of chymase-IR MCs increased only in infected individuals without megaoesophagus. Negative correlations were observed between tryptase-IR MCs and the density of nerve fibres that expressed VIP or PGP 9.5-IR. The participation of chymase and tryptase in this type of immunopathology is discussed.
Collapse
Affiliation(s)
| | | | - André de Souza Lisboa
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, 31.270-901, Brazil
| | | | - Débora d'Ávila Reis
- Department of Morphology, ICB, Universidade Federal de Minas Gerais, 31.270-901, Brazil.
| |
Collapse
|
40
|
Di Nardo G, Barbara G, Cucchiara S, Cremon C, Shulman RJ, Isoldi S, Zecchi L, Drago L, Oliva S, Saulle R, Barbaro MR, Stronati L. Neuroimmune interactions at different intestinal sites are related to abdominal pain symptoms in children with IBS. Neurogastroenterol Motil 2014; 26:196-204. [PMID: 24304324 DOI: 10.1111/nmo.12250] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroimmune interactions and inflammation have been proposed as factors involved in sensory-motor dysfunction and symptom generation in adult irritable bowel syndrome (IBS) patients. In children with IBS and healthy controls, we measured ileocolonic mast cell infiltration and fecal calprotectin and evaluated the relationships between these parameters and abdominal pain symptoms and stooling pattern. METHODS Irritable bowel syndrome patients diagnosed according to Pediatric Rome III criteria and healthy controls kept a 2-week pain/stooling diary. Ileocolonic mucosal mast cells (MC) and MC in close proximity to nerve fibers (MC-NF) were identified immunohistochemically and quantified. Fecal calprotectin concentration was measured. KEY RESULTS 21 IBS patients and 10 controls were enrolled. The MC-NF count was significantly higher in the ileum (p = 0.01), right colon (p = 0.04), and left colon (p < 0.001) of IBS patients compared with controls. No differences in fecal calprotectin concentration were noted. Abdominal pain intensity score correlated with ileal MC count (r(s) = 0.47, p = 0.030) and right colon MC-NF count (r(s) = 0.52, p = 0.015). In addition, children with IBS with >3 abdominal pain episodes/week had greater ileal (p = 0.002) and right colonic (p = 0.01) MC counts and greater ileal (p = 0.05) and right colonic (p = 0.016) MC-NF counts than children with less frequent pain. No relationship was found between MC and MC-NF and fecal calprotectin or stooling pattern. CONCLUSIONS & INFERENCES Mast cells-nerve fibers counts are increased in the ileocolonic mucosa of children with IBS. Mast cells and MC-NF counts are related to the intensity and frequency of abdominal pain.
Collapse
Affiliation(s)
- G Di Nardo
- Department of Pediatrics, Pediatric Gastroenterology Unit, "Sapienza" University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Undem BJ, Taylor-Clark T. Mechanisms underlying the neuronal-based symptoms of allergy. J Allergy Clin Immunol 2014; 133:1521-34. [PMID: 24433703 DOI: 10.1016/j.jaci.2013.11.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Persons with allergies present with symptoms that often are the result of alterations in the nervous system. Neuronally based symptoms depend on the organ in which the allergic reaction occurs but can include red itchy eyes, sneezing, nasal congestion, rhinorrhea, coughing, bronchoconstriction, airway mucus secretion, dysphagia, altered gastrointestinal motility, and itchy swollen skin. These symptoms occur because mediators released during an allergic reaction can interact with sensory nerves, change processing in the central nervous system, and alter transmission in sympathetic, parasympathetic, and enteric autonomic nerves. In addition, evidence supports the idea that in some subjects this neuromodulation is, for reasons poorly understood, upregulated such that the same degree of nerve stimulus causes a larger effect than seen in healthy subjects. There are distinctions in the mechanisms and nerve types involved in allergen-induced neuromodulation among different organ systems, but general principles have emerged. The products of activated mast cells, other inflammatory cells, and resident cells can overtly stimulate nerve endings, cause long-lasting changes in neuronal excitability, increase synaptic efficacy, and also change gene expression in nerves, resulting in phenotypically altered neurons. A better understanding of these processes might lead to novel therapeutic strategies aimed at limiting the suffering of those with allergies.
Collapse
Affiliation(s)
- Bradley J Undem
- Division of Allergy & Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, Md.
| | - Thomas Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Fla
| |
Collapse
|
42
|
Lyte M. Microbial endocrinology and the microbiota-gut-brain axis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:3-24. [PMID: 24997027 DOI: 10.1007/978-1-4939-0897-4_1] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial endocrinology is defined as the study of the ability of microorganisms to both produce and recognize neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. As such, microbial endocrinology represents the intersection of the fields of microbiology and neurobiology. The acquisition of neurochemical-based cell-to-cell signaling mechanisms in eukaryotic organisms is believed to have been acquired due to late horizontal gene transfer from prokaryotic microorganisms. When considered in the context of the microbiota's ability to influence host behavior, microbial endocrinology with its theoretical basis rooted in shared neuroendocrine signaling mechanisms provides for testable experiments with which to understand the role of the microbiota in host behavior and as importantly the ability of the host to influence the microbiota through neuroendocrine-based mechanisms.
Collapse
Affiliation(s)
- Mark Lyte
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX, 79601, USA,
| |
Collapse
|
43
|
Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 2013; 9:e1003726. [PMID: 24244158 PMCID: PMC3828163 DOI: 10.1371/journal.ppat.1003726] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Mark Lyte
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
SCHEMANN MICHAEL, CAMILLERI MICHAEL. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 2013; 144:698-704.e4. [PMID: 23354018 PMCID: PMC3922647 DOI: 10.1053/j.gastro.2013.01.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/05/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022]
Abstract
Close association between nerves and mast cells in the gut wall provides the microanatomic basis for functional interactions between these elements, supporting the hypothesis that a mast cell-nerve axis influences gut functions in health and disease. Advanced morphology and imaging techniques are now available to assess structural and functional relationships of the mast cell-nerve axis in human gut tissues. Morphologic techniques including co-labeling of mast cells and nerves serve to evaluate changes in their densities and anatomic proximity. Calcium (Ca(++)) and potentiometric dye imaging provide novel insights into functions such as mast cell-nerve signaling in the human gut tissues. Such imaging promises to reveal new ionic or molecular targets to normalize nerve sensitization induced by mast cell hyperactivity or mast cell sensitization by neurogenic inflammatory pathways. These targets include proteinase-activated receptor (PAR) 1 or histamine receptors. In patients, optical imaging in the gut in vivo has the potential to identify neural structures and inflammation in vivo. The latter has some risks and potential of sampling error with a single biopsy. Techniques that image nerve fibers in the retina without the need for contrast agents (optical coherence tomography and full-field optical coherence microscopy) may be applied to study submucous neural plexus. Moreover, the combination of submucosal dissection, use of a fluorescent marker, and endoscopic confocal microscopy provides detailed imaging of myenteric neurons and smooth muscle cells in the muscularis propria. Studies of motility and functional gastrointestinal disorders would be feasible without the need for full-thickness biopsy.
Collapse
Affiliation(s)
- MICHAEL SCHEMANN
- Human Biology, Technische Universität
München, Freising, Germany
| | - MICHAEL CAMILLERI
- Clinical Enteric Neuroscience Translational and
Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
45
|
Stark TD, Mtui DJ, Balemba OB. Ethnopharmacological Survey of Plants Used in the Traditional Treatment of Gastrointestinal Pain, Inflammation and Diarrhea in Africa: Future Perspectives for Integration into Modern Medicine. Animals (Basel) 2013; 3:158-227. [PMID: 26487315 PMCID: PMC4495512 DOI: 10.3390/ani3010158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
There is a growing need to find the most appropriate and effective treatment options for a variety of painful syndromes, including conditions affecting the gastrointestinal tract, for treating both veterinary and human patients. The most successful regimen may come through integrated therapies including combining current and novel western drugs with acupuncture and botanical therapies or their derivatives. There is an extensive history and use of plants in African traditional medicine. In this review, we have highlighted botanical remedies used for treatment of pain, diarrheas and inflammation in traditional veterinary and human health care in Africa. These preparations are promising sources of new compounds comprised of flavonoids, bioflavanones, xanthones, terpenoids, sterols and glycosides as well as compound formulas and supplements for future use in multimodal treatment approaches to chronic pain, gastrointestinal disorders and inflammation. The advancement of plant therapies and their derivative compounds will require the identification and validation of compounds having specific anti-nociceptive neuromodulatory and/or anti-inflammatory effects. In particular, there is need for the identification of the presence of compounds that affect purinergic, GABA, glutamate, TRP, opioid and cannabinoid receptors, serotonergic and chloride channel systems through bioactivity-guided, high-throughput screening and biotesting. This will create new frontiers for obtaining novel compounds and herbal supplements to relieve pain and gastrointestinal disorders, and suppress inflammation.
Collapse
Affiliation(s)
- Timo D Stark
- Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik, Technische Universität München, Lise-Meitner Str. 34, D-85354, Freising, Germany.
| | - Dorah J Mtui
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Onesmo B Balemba
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
46
|
Balestra B, Vicini R, Cremon C, Zecchi L, Dothel G, Vasina V, De Giorgio R, Paccapelo A, Pastoris O, Stanghellini V, Corinaldesi R, De Ponti F, Tonini M, Barbara G. Colonic mucosal mediators from patients with irritable bowel syndrome excite enteric cholinergic motor neurons. Neurogastroenterol Motil 2012; 24:1118-e570. [PMID: 22937879 DOI: 10.1111/nmo.12000] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mediators released in the mucosal milieu have been suggested to be involved in visceral hypersensitivity and abdominal pain in patients with irritable bowel syndrome (IBS). However, their impact on myenteric neurons remains unsettled. METHODS Mucosal biopsies were obtained from the descending colon of patients with IBS and controls. Mucosal mast cells were identified immunohistochemically. The impact of spontaneously released mucosal mediators on guinea pig electrically stimulated longitudinal muscle myenteric plexus (LMMP) preparations was assessed in vitro by means of selective receptor antagonists and inhibitors. KEY RESULTS Patients with IBS showed an increased mast cell count compared with controls. Application of mucosal mediators of IBS to LMMPs potentiated cholinergic twitch contractions, an effect directly correlated with mast cell counts. Enhanced contractions were inhibited by 50.3% with the prostaglandin D2 antagonist BW A868C, by 31.3% and 39% with the TRPV1 antagonists capsazepine and HC-030031, respectively, and by 60.5% with purinergic P2X antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid. Conversely, the serotonin1-4, histamine1-3, tachykinin1-3 receptor blockade, and serine protease inhibition had no significant effect. CONCLUSIONS & INFERENCES Colonic mucosal mediators from patients with IBS excite myenteric cholinergic motor neurons. These effects were correlated with mast cell counts and mediated by activation of prostanoid receptors, TRPV1, and P2X receptors. These results support the role of mucosal inflammatory mediators and mast cell activation in altered motor function of IBS.
Collapse
Affiliation(s)
- B Balestra
- Department of Forensic Medicine, Pharmacology and Toxicology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hagel AF, deRossi T, Zopf Y, Konturek P, Dauth W, Kressel J, Hahn EG, Raithel M. Mast cell tryptase levels in gut mucosa in patients with gastrointestinal symptoms caused by food allergy. Int Arch Allergy Immunol 2012. [PMID: 23183101 DOI: 10.1159/000341634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Mast cells, which are important effector cells in food allergy, require a special histologic treatment for quantification in endoscopic gastrointestinal samples. The objective of this study was to investigate whether mast cell tryptase (T), a typical mast cell-associated marker, may help to detect patients with food allergy. METHODS Mast cell T was investigated from 289 colorectal samples of 73 controls, 302 samples from 43 patients with food allergy and gastrointestinal symptoms, and 72 samples from 12 patients with partial or complete remission of allergic symptoms. Endoscopically taken samples were immediately put into liquid nitrogen, mechanically homogenized by a micro-dismembrator with three homogenization steps and tissue T content (ng T/mg wet weight) was measured by fluoroenzyme immunoassay. RESULTS Tissue T levels from the lower gastrointestinal tract were significantly elevated (p < 0.0001) in patients with manifest gastrointestinal allergy (median: 55.7, range: 9.3-525.0) compared with controls (median: 33.5, range: 8.0-154.6). A subgroup of 12 patients with remission of allergy showed markedly decreased symptom scores and mucosal T levels after more than 1 year of antiallergic therapy (pretreatment median: 54.1, range: 37.0-525.0 and posttreatment median: 28.4, range: 19.8-69.1; p = 0.01). CONCLUSIONS High T levels in the gut of food-allergic patients support the role of stimulated mast cells or an increased mast cell number.
Collapse
Affiliation(s)
- A F Hagel
- Department of Medicine I, Functional Tissue Diagnostics, University Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hasan S, Al Ali H, Al-Qubaisi M, Zobir Hussein M, Ismail M, Zainal Z, Nazrul Hakim M. Controlled-release formulation of antihistamine based on cetirizine zinc-layered hydroxide nanocomposites and its effect on histamine release from basophilic leukemia (RBL-2H3) cells. Int J Nanomedicine 2012; 7:3351-63. [PMID: 22848164 PMCID: PMC3405893 DOI: 10.2147/ijn.s30809] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A controlled-release formulation of an antihistamine, cetirizine, was synthesized using zinc-layered hydroxide as the host and cetirizine as the guest. The resulting well-ordered nanolayered structure, a cetirizine nanocomposite “CETN,” had a basal spacing of 33.9 Å, averaged from six harmonics observed from X-ray diffraction. The guest, cetirizine, was arranged in a horizontal bilayer between the zinc-layered hydroxide (ZLH) inorganic interlayers. Fourier transform infrared spectroscopy studies indicated that the intercalation takes place without major change in the structure of the guest and that the thermal stability of the guest in the nanocomposites is markedly enhanced. The loading of the guest in the nanocomposites was estimated to be about 49.4% (w/w). The release study showed that about 96% of the guest could be released in 80 hours by phosphate buffer solution at pH 7.4 compared with about 97% in 73 hours at pH 4.8. It was found that release was governed by pseudo-second order kinetics. Release of histamine from rat basophilic leukemia cells was found to be more sensitive to the intercalated cetirizine in the CETN compared with its free counterpart, with inhibition of 56% and 29%, respectively, at 62.5 ng/mL. The cytotoxicity assay toward Chang liver cells line show the IC50 for CETN and ZLH are 617 and 670 μg/mL, respectively.
Collapse
Affiliation(s)
- Samer Hasan
- Department of Chemistry, Faculty of Science, Universiti Putra, Malaysia
| | | | | | | | | | | | | |
Collapse
|
49
|
In vitro inhibition of histamine release behavior of cetirizine intercalated into Zn/Al- and Mg/Al-layered double hydroxides. Int J Mol Sci 2012; 13:5899-5916. [PMID: 22754339 PMCID: PMC3382767 DOI: 10.3390/ijms13055899] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 12/01/2022] Open
Abstract
The intercalation of cetirizine into two types of layered double hydroxides, Zn/Al and Mg/Al, has been investigated by the ion exchange method to form CTZAN and CTMAN nanocomposites, respectively. The basal spacing of the nanocomposites were expanded to 31.9 Å for CTZAN and 31.2 Å for CTMAN, suggesting that cetirizine anion was intercalated into Layered double hydroxides (LDHs) and arranged in a tilted bilayer fashion. A Fourier transform infrared spectroscopy (FTIR) study supported the formation of both the nanocomposites, and the intercalated cetirizine is thermally more stable than its counterpart in free state. The loading of cetirizine in the nanocomposite was estimated to be about 57.2% for CTZAN and 60.7% CTMAN. The cetirizine release from the nanocomposites show sustained release manner and the release rate of cetirizine from CTZAN and CTMAN nanocomposites at pH 7.4 is remarkably lower than that at pH 4.8, presumably due to the different release mechanism. The inhibition of histamine release from RBL2H3 cells by the free cetirizine is higher than the intercalated cetirizine both in CTZAN and CTMAN nanocomposites. The viability in human Chang liver cells at 1000 μg/mL for CTZAN and CTMAN nanocomposites are 74.5 and 91.9%, respectively.
Collapse
|
50
|
Hanaway PJ. Irritable Bowel Syndrome. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|