1
|
Chen M, Wang K, Han Y, Yan S, Yuan H, Liu Q, Li L, Li N, Zhu H, Lu D, Wang K, Liu F, Luo D, Zhang Y, Jiang J, Li D, Zhang L, Ji H, Zhou H, Chen Y, Qin J, Gao D. Identification of XAF1 as an endogenous AKT inhibitor. Cell Rep 2023; 42:112690. [PMID: 37384528 DOI: 10.1016/j.celrep.2023.112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
AKT kinase is a key regulator in cell metabolism and survival, and its activation is strictly modulated. Herein, we identify XAF1 (XIAP-associated factor) as a direct interacting protein of AKT1, which strongly binds the N-terminal region of AKT1 to block its K63-linked poly-ubiquitination and subsequent activation. Consistently, Xaf1 knockout causes AKT activation in mouse muscle and fat tissues and reduces body weight gain and insulin resistance induced by high-fat diet. Pathologically, XAF1 expression is low and anti-correlated with the phosphorylated p-T308-AKT signal in prostate cancer samples, and Xaf1 knockout stimulates the p-T308-AKT signal to accelerate spontaneous prostate tumorigenesis in mice with Pten heterozygous loss. And ectopic expression of wild-type XAF1, but not the cancer-derived P277L mutant, inhibits orthotopic tumorigenesis. We further identify Forkhead box O 1 (FOXO1) as a transcriptional regulator of XAF1, thus forming a negative feedback loop between AKT1 and XAF1. These results reveal an important intrinsic regulatory mechanism of AKT signaling.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kangjunjie Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ying Han
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shukun Yan
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, 333 Haike Road, Shanghai 201210, China
| | - Huairui Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Long Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dayun Lu
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Kaihua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Fen Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yuxue Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yong Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, 333 Haike Road, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China.
| | - Jun Qin
- University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
Stachon T, Nastaranpour M, Seitz B, Meese E, Latta L, Taneri S, Ardjomand N, Szentmáry N, Ludwig N. Altered Regulation of mRNA and miRNA Expression in Epithelial and Stromal Tissue of Keratoconus Corneas. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35816043 PMCID: PMC9284461 DOI: 10.1167/iovs.63.8.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Evaluation of mRNA and microRNA (miRNA) expression in epithelium and stroma of patients with keratoconus. Methods The epithelium and stroma of eight corneas of eight patients with keratoconus and eight corneas of eight non-keratoconus healthy controls were studied separately. RNA was extracted, and mRNA and miRNA analyses were performed using microarrays. Differentially expressed mRNAs and miRNAs in epithelial and stromal keratoconus samples compared to healthy controls were identified. Selected genes and miRNAs were further validated using RT-qPCR. Results We discovered 170 epithelial and 1498 stromal deregulated protein-coding mRNAs in KC samples. In addition, in epithelial samples 180 miRNAs and in stromal samples 379 miRNAs were significantly deregulated more than twofold compared to controls. Pathway analysis revealed enrichment of metabolic and axon guidance pathways for epithelial cells and enrichment of metabolic, mitogen-activated protein kinase (MAPK), and focal adhesion pathways for stromal cells. Conclusions This study demonstrates significant differences in the expression and regulation of mRNAs and miRNAs in the epithelium and stroma of Patients with KC. Also, in addition to the well-known target candidates, we were able to identify further genes and miRNAs that may be associated with keratoconus. Signaling pathways influencing metabolic changes and cell contacts are affected in epithelial and stromal cells of patients with keratoconus.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg (Saar), Germany
| | - Mahsa Nastaranpour
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg (Saar), Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg (Saar), Germany
| | - Eckart Meese
- Department of Human Genetics and Center for Human and Molecular Biology, Saarland University, Homburg (Saar), Germany
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg (Saar), Germany
| | - Suphi Taneri
- Center for Refractive Surgery, Eye Department at St. Francis Hospital, Muenster, Germany
| | | | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg (Saar), Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Nicole Ludwig
- Department of Human Genetics and Center for Human and Molecular Biology, Saarland University, Homburg (Saar), Germany
| |
Collapse
|
3
|
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. Although targeted therapy in combination with chemotherapy in CRC prolongs the overall survival of patients with metastatic disease, acquired resistance and relapse hinder their clinical benefits. Moreover, patients with some specific genetic profile are unlikely to benefit from targeted therapy, suggesting the need for safe and effective treatment strategies. Retinoids, comprising of natural and synthetic analogs, are a class of chemical compounds that regulate cellular proliferation, differentiation, and cell death. Retinoids have been used in the clinic for several leukemias and solid tumors, either as single agents or in combination therapy. Furthermore, retinoids have shown potent chemotherapeutic and chemopreventive properties in different cancer models, including CRC. In this review, we summarize the major preclinical findings in CRC in which natural and synthetic retinoids showed promising antitumor activities and stress on the proposed mechanisms of action. Understanding of the retinoids' antitumor mechanisms would provide insights to support and warrant their development in the management of CRC.
Collapse
|
4
|
Costantini L, Molinari R, Farinon B, Merendino N. Retinoic Acids in the Treatment of Most Lethal Solid Cancers. J Clin Med 2020; 9:E360. [PMID: 32012980 PMCID: PMC7073976 DOI: 10.3390/jcm9020360] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although the use of oral administration of pharmacological all-trans retinoic acid (ATRA) concentration in acute promyelocytic leukaemia (APL) patients was approved for over 20 years and used as standard therapy still to date, the same use in solid cancers is still controversial. In the present review the literature about the top five lethal solid cancers (lung, stomach, liver, breast, and colon cancer), as defined by The Global Cancer Observatory of World Health Organization, and retinoic acids (ATRA, 9-cis retinoic acid, and 13-cis retinoic acid, RA) was compared. The action of retinoic acids in inhibiting the cell proliferation was found in several cell pathways and compartments: from membrane and cytoplasmic signaling, to metabolic enzymes, to gene expression. However, in parallel in the most aggressive phenotypes several escape routes have evolved conferring retinoic acids-resistance. The comparison between different solid cancer types pointed out that for some cancer types several information are still lacking. Moreover, even though some pathways and escape routes are the same between the cancer types, sometimes they can differently respond to retinoic acid therapy, so that generalization cannot be made. Further studies on molecular pathways are needed to perform combinatorial trials that allow overcoming retinoic acids resistance.
Collapse
Affiliation(s)
- Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | | | | | | |
Collapse
|
5
|
Ayala-Domínguez L, Olmedo-Nieva L, Muñoz-Bello JO, Contreras-Paredes A, Manzo-Merino J, Martínez-Ramírez I, Lizano M. Mechanisms of Vasculogenic Mimicry in Ovarian Cancer. Front Oncol 2019; 9:998. [PMID: 31612116 PMCID: PMC6776917 DOI: 10.3389/fonc.2019.00998] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Solid tumors carry out the formation of new vessels providing blood supply for growth, tumor maintenance, and metastasis. Several processes take place during tumor vascularization. In angiogenesis, new vessels are derived from endothelial cells of pre-existing vessels; while in vasculogenesis, new vessels are formed de novo from endothelial progenitor cells, creating an abnormal, immature, and disorganized vascular network. Moreover, highly aggressive tumor cells form structures similar to vessels, providing a pathway for perfusion; this process is named vasculogenic mimicry (VM), where vessel-like channels mimic the function of vessels and transport plasma and blood cells. VM is developed by numerous types of aggressive tumors, including ovarian carcinoma which is the second most common cause of death among gynecological cancers. VM has been associated with poor patient outcome and survival in ovarian cancer, although the involved mechanisms are still under investigation. Several signaling molecules have an important role in VM in ovarian cancer, by regulating the expression of genes related to vascular, embryogenic, and hypoxic signaling pathways. In this review, we provide an overview of the current knowledge of the signaling molecules involved in the promotion and regulation of VM in ovarian cancer. The clinical implications and the potential benefit of identification and targeting of VM related molecules for ovarian cancer treatment are also discussed.
Collapse
Affiliation(s)
- Lízbeth Ayala-Domínguez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Imelda Martínez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Jiang X, Yin L, Zhang N, Han F, Liu WB, Zhang X, Chen HQ, Cao J, Liu JY. Bisphenol A induced male germ cell apoptosis via IFNβ-XAF1-XIAP pathway in adult mice. Toxicol Appl Pharmacol 2018; 355:247-256. [PMID: 30017639 DOI: 10.1016/j.taap.2018.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
|
7
|
Shimomura H, Sasahira T, Nakashima C, Shimomura-Kurihara M, Kirita T. Downregulation of DHRS9 is associated with poor prognosis in oral squamous cell carcinoma. Pathology 2018; 50:642-647. [PMID: 30149992 DOI: 10.1016/j.pathol.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) has a high potential for local invasion and nodal metastasis. Therefore, early detection and elucidation of the detailed molecular mechanisms underlying OSCC are essential. Dehydrogenase/reductase member 9 (DHRS9) is downregulated in recurrent OSCC. Although DHRS9 is reported to act as a tumour suppressor in several malignancies, its expression in OSCC cells is unknown. In this study, we examined DHRS9 expression immunohistochemically in specimens from a sample of 98 OSCC patients. Reduced DHRS9 expression was observed in 68 of 98 patients (69.4%) with OSCC. A significant association was found between low DHRS9 expression and local progression (T factor) (p = 0.0135). Furthermore, patients with low DHRS9 expression had a significantly poorer prognosis than those with high DHRS9 expression (p = 0.0443). In multivariate analysis using the Cox proportional hazards model, decreased DHRS9 expression strongly correlated with worse prognosis. The study findings suggest that DHRS9 might be a useful diagnostic and prognostic marker for OSCC.
Collapse
Affiliation(s)
- Hiroyuki Shimomura
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan.
| | - Chie Nakashima
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | | | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| |
Collapse
|
8
|
Park GB, Jeong JY, Kim D. Ampelopsin-induced reactive oxygen species enhance the apoptosis of colon cancer cells by activating endoplasmic reticulum stress-mediated AMPK/MAPK/XAF1 signaling. Oncol Lett 2017; 14:7947-7956. [PMID: 29250183 DOI: 10.3892/ol.2017.7255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/23/2017] [Indexed: 01/03/2023] Open
Abstract
Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5' adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea
| |
Collapse
|
9
|
Zhao WJ, Deng BY, Wang XM, Miao Y, Wang JN. XIAP associated factor 1 (XAF1) represses expression of X-linked inhibitor of apoptosis protein (XIAP) and regulates invasion, cell cycle, apoptosis, and cisplatin sensitivity of ovarian carcinoma cells. Asian Pac J Cancer Prev 2016; 16:2453-8. [PMID: 25824780 DOI: 10.7314/apjcp.2015.16.6.2453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND X-linked inhibitor of apoptosis protein (XIAP) associated factor 1 (XAF1) exhibits aberrantly low or absent expression in various human malignancies, closely associated with anti-apoptosis and overgrowth of cancer cells. However, limited attention has been directed towards the contribution of XAF1 to invasion, apoptosis, and cisplatin (DDP)-resistance of epithelial ovarian cancer (EOC) cells. This study aimed to evaluate the potential effects of XAF1 on invasion, cell cycle, apoptosis, and cisplatin-resistance by overexpressing XAF1 in SKOV-3 and SKOV-3/DDP cells. METHODS AND RESULTS The pEGFP-C1-XAF1 plasmid was transfected into SKOV-3 and SKOV-3/DDP cells, and the expression of XAF1 at both mRNA and protein levels was analyzed by reverse transcription-PCR and Western blotting. Overexpression of XAF1 suppressed XIAP expression in both SKOV-3 and SKOV-3/DDP cells. Transwell invasion assays demonstrated that XAF1 exerted a strong anti-invasive effect in XAF1-overexpressing cells. Moreover, flow cytometry analysis revealed that XAF1 overexpression arrested the cell cycle at G0/G1 phase, and cell apoptosis analysis showed that overexpression of XAF1 enhanced apoptosis of SKOV-3 and SKOV-3/DDP cells apparently by activating caspase-9 and caspase-3. Furthermore, MTT assay confirmed a dose-dependent inhibitory effect of cisplatin in the tested tumor cells, and overexpression of XAF1 increased the sensitivity of SKOV-3 and SKOV-3/DDP cells to cisplatin-mediated anti- proliferative effects. CONCLUSIONS In summary, our data indicated that overexpression of XAF1 could suppress XIAP expression, inhibit invasion, arrest cell cycle, promote apoptosis, and confer cisplatin-sensitivity in SKOV-3 and SKOV-3/DDP cells. Therefore, XAF1 may be further assessed as a potential target for the treatment of both cisplatin-resistant and non-resistant EOCs.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Medical Ultrasonics, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China E-mail :
| | | | | | | | | |
Collapse
|
10
|
Victoria-Acosta G, Vazquez-Santillan K, Jimenez-Hernandez L, Muñoz-Galindo L, Maldonado V, Martinez-Ruiz GU, Melendez-Zajgla J. Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding. Sci Rep 2015; 5:14838. [PMID: 26443201 PMCID: PMC4595840 DOI: 10.1038/srep14838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022] Open
Abstract
XAF1 is a tumour suppressor gene that compromises cell viability by modulating different cellular events such as mitosis, cell cycle progression and apoptosis. In cancer, the XAF1 gene is commonly silenced by CpG-dinucleotide hypermethylation of its promoter. DNA demethylating agents induce transcriptional reactivation of XAF1, sensitizing cancer cells to therapy. The molecular mechanisms that mediate promoter CpG methylation have not been previously studied. Here, we demonstrate that CTCF interacts with the XAF1 promoter in vivo in a methylation-sensitive manner. By transgene assays, we demonstrate that CTCF mediates the open-chromatin configuration of the XAF1 promoter, inhibiting both CpG-dinucleotide methylation and repressive histone posttranslational modifications. In addition, the absence of CTCF in the XAF1 promoter inhibits transcriptional activation induced by well-known apoptosis activators. We report for the first time that epigenetic silencing of the XAF1 gene is a consequence of the loss of CTCF binding.
Collapse
Affiliation(s)
- Georgina Victoria-Acosta
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico
| | | | - Luis Jimenez-Hernandez
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Laura Muñoz-Galindo
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Vilma Maldonado
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Gustavo Ulises Martinez-Ruiz
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico.,Unit of Investigative Research on Oncological Disease, Children's Hospital of Mexico "Federico Gomez", Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico
| |
Collapse
|
11
|
Hatakeyama K, Yamakawa Y, Fukuda Y, Ohshima K, Wakabayashi-Nakao K, Sakura N, Tanizawa Y, Kinugasa Y, Yamaguchi K, Terashima M, Mochizuki T. A novel splice variant of XIAP-associated factor 1 (XAF1) is expressed in peripheral blood containing gastric cancer-derived circulating tumor cells. Gastric Cancer 2015; 18:751-61. [PMID: 25216542 DOI: 10.1007/s10120-014-0426-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND XIAP-associated factor 1 (XAF1) is ubiquitously expressed in normal tissues, but its suppression in cancer cells is strongly associated with tumor progression. Although downregulation of XAF1 is observed in tumors, its expression profile in the peripheral blood of cancer patients has not yet been investigated. Here, we identified a novel XAF1 splice variant in cancer cells and then investigated the expression level of this variant in peripheral blood containing gastric cancer-derived circulating tumor cells (CTCs). METHODS To identify splice variants, RT-PCR and DNA sequencing were performed in mRNAs extracted from many cancer cells. We then carried out quantitative RT-PCR to investigate expression in peripheral blood from all 96 gastric cancer patients and 22 healthy volunteers. RESULTS The XAF1 variant harbored a premature termination codon (PTC) and was differentially expressed in highly metastatic cancer cells versus the parental cells, and that nonsense-mediated mRNA decay (NMD) was suppressed in the variant-expressing cells. Furthermore, splice variants of XAF1 were upregulated in peripheral blood containing CTCs. In XAF1 variant-expressing patients, the expression levels of other NMD-targeted genes also increased, suggesting that the NMD pathway was suppressed in CTCs. CONCLUSIONS Our study identified a novel splice variant of XAF1 in cancer cells. This variant was regulated through the NMD pathway and accumulated in NMD-suppressed metastatic cancer cells and peripheral blood containing CTCs. The presence of XAF1 transcripts harboring the PTC in the peripheral blood may be useful as an indicator of NMD inhibition in CTCs.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yushi Yamakawa
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yorikane Fukuda
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- G&G Science, Fukushima, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | - Naoki Sakura
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yutaka Tanizawa
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yusuke Kinugasa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
12
|
Hu L, Chen HY, Han T, Yang GZ, Feng D, Qi CY, Gong H, Zhai YX, Cai QP, Gao CF. Downregulation of DHRS9 expression in colorectal cancer tissues and its prognostic significance. Tumour Biol 2015; 37:837-45. [PMID: 26254099 PMCID: PMC4841860 DOI: 10.1007/s13277-015-3880-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/30/2015] [Indexed: 12/03/2022] Open
Abstract
Dehydrogenase/reductase (SDR family) member 9 (DHRS9) is aberrantly expressed in colorectal cancer (CRC), but its prognostic value is unknown. The aim of the work was to investigate the prognostic significance of DHRS9 expression in CRC. We found that DHRS9 was frequently downregulated in CRC clinical samples at both the messenger RNA (mRNA) and protein levels. Decreased expression of DHRS9 was significantly correlated with increased lymph node metastasis (p = 0.032), advanced tumor–node–metastasis (TNM) stage (p = 0.021), increased disease recurrence (p = 0.001), and death (p = 0.014). Kaplan–Meier analysis indicated that low DHRS9 expression predicted poor disease-free survival (p = 0.003) and disease-specific survival (p = 0.021). Cox multivariate analysis revealed that reduced expression of DHRS9 was an independent unfavorable prognostic indicator for CRC. Furthermore, combination of DHRS9 with TNM stage was a more powerful predictor of poor prognosis than either of the two parameters alone. Our results suggest that decreased expression of DHRS9 correlates with tumor progression and may serve as a potential prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Liang Hu
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| | - Hai-Yang Chen
- Department of Oncology, 150th Hospital of PLA, Luoyang, China
| | - Tao Han
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang, China
| | - Guang-Zhen Yang
- Department of Clinical Laboratory, 150th Hospital of PLA, Luoyang, China
| | - Dan Feng
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chen-Ye Qi
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Hui Gong
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Yan-Xia Zhai
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China
| | - Qing-Ping Cai
- Department of Gastrointestine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Chun-Fang Gao
- Anal-Colorectal Surgery Institute, 150th Hospital of PLA, Luoyang, China.
| |
Collapse
|
13
|
Lou YF, Zou ZZ, Chen PJ, Huang GB, Li B, Zheng DQ, Yu XR, Luo XY. Combination of gefitinib and DNA methylation inhibitor decitabine exerts synergistic anti-cancer activity in colon cancer cells. PLoS One 2014; 9:e97719. [PMID: 24874286 PMCID: PMC4038521 DOI: 10.1371/journal.pone.0097719] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR) and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor) synergized with gefitinib (an EGFR inhibitor) to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1) which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA) depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon cancer.
Collapse
Affiliation(s)
- Yun-feng Lou
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Zheng-zhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Pin-jia Chen
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Guo-bin Huang
- Department of Gastroenterology, The Affiliated Donghua Hospital of Sun Yat-sen University, Dongguan, China
| | - Bin Li
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - De-qing Zheng
- Department of Gastroenterology, The Affiliated Donghua Hospital of Sun Yat-sen University, Dongguan, China
| | - Xiu-rong Yu
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Xiao-yong Luo
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
- * E-mail:
| |
Collapse
|
14
|
Abstract
Cell death by apoptosis plays a critical role in regulating the subtle balance between cell death and proliferation to maintain tissue homeostasis. Accordingly, tipping the balance in either direction may cause human disease. Too little cell death may promote tumor formation and progression. In addition, killing of cancer cells by current therapies is largely due to induction of apoptosis in tumor cells. Since a hallmark of human cancers is their resistance to apoptosis, there is a demand to develop novel strategies that restore the apoptotic machinery in order to overcome cancer resistance. Inhibitor of apoptosis proteins (IAPs) block apoptosis at the core of the apoptotic machinery by inhibiting caspases. Elevated levels of IAPs are found in many human cancers and have been associated with poor prognosis. Recent insights into the role of IAPs have provided the basis for various exciting developments that aim to modulate the expression or function of IAPs in human cancers. Targeting IAPs (e.g., by antisense approaches or small-molecule inhibitors) presents a promising novel approach to either directly trigger apoptosis or to potentiate the efficacy of cytotoxic therapies in cancer cells. Thus, inhibition of IAPs such as X chromosome-linked IAP may prove to be a successful strategy to overcome apoptosis resistance of human cancers that deserves further exploitation.
Collapse
Affiliation(s)
- Simone Fulda
- University Children's Hospital, Eythstr. 24-89075, Ulm, Germany.
| |
Collapse
|
15
|
Treeck O, Belgutay D, Häring J, Schüler S, Lattrich C, Ortmann O. Network analysis of icb-1 gene function in human breast cancer cells. J Cell Biochem 2012; 113:2979-88. [PMID: 22565810 DOI: 10.1002/jcb.24175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Icb-1 is a human gene previously described by our group to exert important functions in cancer cells of different origin. We now performed microarray-based gene expression profiling with subsequent network modeling to further elucidate the role of icb-1 in breast cancer cells. Analyzing the effect of icb-1 knockdown on the transcriptome of MCF-7 cells, we found 151 differentially expressed genes exhibiting more than twofold changes, 97 of which were up- and 54 downregulated. Most of the upregulated genes were cancer-related genes associated with poor prognosis, invasion and metastasis, building an oncogenic network of TNF target genes. On the other hand, network analysis identified the downregulated genes to be primarily involved in interferon signaling and cellular apoptosis. Confirming these network data, we observed that cells with reduced levels of icb-1 exhibited an impaired response to the apoptosis inducers tamoxifen, staurosporine, actinomycin, and camptothecin. The data of this study suggest that icb-1 might exert a tumor-suppressor function in breast cancer and that its loss might confer relative resistance of breast cancer cells to apoptotic drugs.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Obstetrics and Gynecology, Laboratory of Molecular Oncology, University Medical Center Regensburg, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Chen XY, He QY, Guo MZ. XAF1 is frequently methylated in human esophageal cancer. World J Gastroenterol 2012; 18:2844-9. [PMID: 22719195 PMCID: PMC3374990 DOI: 10.3748/wjg.v18.i22.2844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore epigenetic changes in the gene encoding X chromosome-linked inhibitor of apoptosis-associated factor 1 (XAF1) during esophageal carcinogenesis.
METHODS: Methylation status of XAF1 was detected by methylation-specific polymerase chain reaction (MSP) in four esophageal cancer cell lines (KYSE30, KYSE70, BIC1 and partially methylated in TE3 cell lines), nine cases of normal mucosa, 72 cases of primary esophageal cancer and matched adjacent tissue. XAF1 expression was examined by semi-quantitative reverse transcriptional polymerase chain reaction and Western blotting before and after treatment with 5-aza-deoxycytidine (5-aza-dc), a demethylating agent. To investigate the correlation of XAF1 expression and methylation status in primary esophageal cancer, immunohistochemistry for XAF1 expression was performed in 32 cases of esophageal cancer and matched adjacent tissue. The association of methylation status and clinicopathological data was analyzed by logistic regression.
RESULTS: MSP results were as follows: loss of XAF1 expression was found in three of four esophageal cell lines with promoter region hypermethylation (completely methylated in KYSE30, KYSE70 and BIC1 cell lines and partially in TE3 cells); all nine cases of normal esophageal mucosa were unmethylated; and 54/72 (75.00%) samples from patients with esophageal cancer were methylated, and 25/72 (34.70%) matched adjacent tissues were methylated (75.00% vs 34.70%, χ2 = 23.5840, P = 0.000). mRNA level of XAF1 measured with semi-quantitative reverse transcription polymerase chain reaction was detectable only in TE3 cells, and no expression was detected in KYSE30, KYSE70 or BIC1 cells. Protein expression was not observed in KYSE30 cells by Western blotting before treatment with 5-aza-dc. After treatment, mRNA level of XAF1 was detectable in KYSE30, KYSE70 and BIC1 cells. Protein expression was detected in KYSE30 after treatment with 5-aza-dc. Immunohistochemistry was performed on 32 cases of esophageal cancer and adjacent tissue, and demonstrated XAF1 in the nucleus and cytoplasm. XAF1 staining was found in 20/32 samples of adjacent normal tissue but was present in only 8/32 samples of esophageal cancer tissue (χ2= 9.143, P = 0.002). XAF1 expression was decreased in cancer samples compared with adjacent tissues. In 32 cases of esophageal cancer, 24/32 samples were methylated, and 8/32 esophageal cancer tissues were unmethylated. XAF1 staining was found in 6/8 samples of unmethylated esophageal cancer and 2/24 samples of methylated esophageal cancer tissue. XAF1 staining was inversely correlated with XAF1 promoter region methylation (Fisher’s exact test, P = 0.004). Regarding methylation status and clinicopathological data, no significant differences were found in sex, age, tumor size, tumor stage, or metastasis with respect to methylation of XAF1 for the 72 tissue samples from patients with esophageal cancer.
CONCLUSION: XAF1 is frequently methylated in esophageal cancer, and XAF1 expression is regulated by promoter region hypermethylation.
Collapse
|
17
|
Zou B, Chim CS, Pang R, Zeng H, Dai Y, Zhang R, Lam CSC, Tan VPY, Hung IFN, Lan HY, Wong BCY. XIAP-associated factor 1 (XAF1), a novel target of p53, enhances p53-mediated apoptosis via post-translational modification. Mol Carcinog 2012; 51:422-432. [PMID: 21678496 DOI: 10.1002/mc.20807] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 04/11/2011] [Accepted: 05/03/2011] [Indexed: 01/04/2025]
Abstract
The role of X chromosome-linked inhibitor of apoptosis protein (XIAP)-associated factor 1 (XAF1) in mediating apoptosis has been reported but the underlying mechanism remains unclear. The present study was designed to examine the putative interaction between XAF1 and p53 and the functional importance of this interaction in regulation of apoptosis in human gastric and colon cancer cells. We first identified XAF1 as a novel target gene of p53 by the chromatin immunoprecipitation (CHIP) assay and demonstrated that wild-type p53, but not mutant p53, down-regulated XAF1 at both mRNA and protein levels, which acted mostly under the condition of high expression of XAF1 and was associated with the physical interaction between p53 and the XAF1 promoter. We also found that the over-expression of XAF1 led to activation of wild-type p53 via post-translational modification in cells with or without DNA damage, which resulting in p53 nuclear accumulation and its increased transcriptional activity and enhancing p53-dependent apoptosis. These findings suggest that a potential novel feedback loop exists between XAF1 and wild-type p53.
Collapse
Affiliation(s)
- Bing Zou
- Department of Gastroenterology & Hepatology, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
He P, Liu Y, Zhang M, Wang X, Xi J, Wu DI, Li J, Cao Y. Interferon-γ enhances promyelocytic leukemia protein expression in acute promyelocytic cells and cooperates with all-trans-retinoic acid to induce maturation of NB4 and NB4-R1 cells. Exp Ther Med 2012; 3:776-780. [PMID: 22969967 DOI: 10.3892/etm.2012.488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/03/2012] [Indexed: 12/25/2022] Open
Abstract
In order to investigate the effect and mechanisms of interferon (IFN)-γ in combination with all-trans-retinoic acid (ATRA) on NB4 cells [ATRA-sensitive acute promyelocytic leukemia (APL) cell line] and NB4-R1 cells (ATRA-resistant APL cell line) and to search for a novel approach to solve the problem of ATRA resistance in APL, we initially treated NB4 and NB4-R1 cells with IFN-γ, ATRA and IFN-γ in combination with ATRA, respectively. The cell proliferation was then tested by MTT assay, and the cell differentiation was tested through light microscopy, by NBT test and flow cytometry (FCM). The expression of promyelocytic leukemia (PML) protein was observed by indirect immune fluorescent test. Results showed that ATRA inhibited the growth of NB4 cells, however, it could not inhibit the growth of NB4-R1 cells. IFN-γ inhibited the growth of both NB4 and NB4-R1 cells. Meanwhile, the growth inhibition effect of IFN-γ in combination with ATRA on both NB4 and NB4-R1 cells was significantly stronger than that of any single drug treatment. The results of the NBT reduction test and CD11b antigen detection by FCM indicated that IFN-γ induces the differentiation of NB4 and NB4-R1 cells to some extent. Moreover, the maturation degree of both NB4 and NB4-R1 cells induced by IFN-γ in combination with ATRA was more significant than that of IFN-γ or ATRA alone. After treatment with IFN-γ, the number of fluorescent particles in NB4 and NB4-R1 cell nuclei was higher than those in the control group, which indicated that IFN-γ may induce the expression of PML protein. Together, IFN-γ augments the proliferation inhibition effect of ATRA on NB4 and NB4-R1 cells through enhancing the expression of PML protein. IFN-γ in combination with ATRA not only strengthens the induction differentiation effect of ATRA on NB4 cells, but also can partially induce the maturation of NB4-R1 cells with ATRA resistance.
Collapse
Affiliation(s)
- Pengcheng He
- Department of Hematology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Four and a half LIM protein 2 (FHL2) negatively regulates the transcription of E-cadherin through interaction with Snail1. Eur J Cancer 2011; 47:121-30. [PMID: 20801642 DOI: 10.1016/j.ejca.2010.07.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022]
|
20
|
Zhang W, Yang Y, Jiang B, Peng J, Tu S, Sardet C, Zhang Y, Pang R, Hung IF, Tan VPY, Lam CSC, Wang J, Wong BC. XIAP-associated factor 1 interacts with and attenuates the trans-activity of four and a Half LIM protein 2. Mol Carcinog 2010; 50:199-207. [PMID: 21104993 DOI: 10.1002/mc.20705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 09/14/2010] [Accepted: 10/18/2010] [Indexed: 11/11/2022]
|
21
|
Sp1 upregulates the four and half lim 2 (FHL2) expression in gastrointestinal cancers through transcription regulation. Mol Carcinog 2010; 49:826-36. [PMID: 20607723 DOI: 10.1002/mc.20659] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Pinho MB, Costas F, Sellos J, Dienstmann R, Andrade PB, Herchenhorn D, Peixoto FA, Santos VO, Small IA, Guimarães DP, Ferreira CG. XAF1 mRNA expression improves progression-free and overall survival for patients with advanced bladder cancer treated with neoadjuvant chemotherapy. Urol Oncol 2009; 27:382-90. [PMID: 18555708 DOI: 10.1016/j.urolonc.2008.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/04/2008] [Accepted: 03/09/2008] [Indexed: 11/29/2022]
|
23
|
LaCasse EC, Cheung HH, Hunter AM, Plenchette S, Mahoney DJ, Korneluk RG. The Mammalian IAPs: Multifaceted Inhibitors of Apoptosis. ESSENTIALS OF APOPTOSIS 2009:63-93. [DOI: 10.1007/978-1-60327-381-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Zhang F, Wu LM, Zhou L, Chen QX, Xie HY, Feng XW, Zheng SS. Predictive value of expression and promoter hypermethylation of XAF1 in hepatitis B virus-associated hepatocellular carcinoma treated with transplantation. Ann Surg Oncol 2008; 15:3494-3502. [PMID: 18830757 DOI: 10.1245/s10434-008-0146-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/12/2008] [Indexed: 01/04/2025]
Abstract
BACKGROUND Transcriptional regulation of the putative tumor suppressor gene X-linked inhibitor of apoptosis protein-associated factor 1 (XAF1) by promoter methylation has been related to tumor progression in gastric and bladder cancer. The aim of this study was to investigate the methylation status and expression level of XAF1 in human hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) treated with liver transplantation (LT), and to evaluate potential predictive value for tumor recurrence. METHODS The expression level and methylation status of XAF1 in three liver cancer cell lines (SMMC-7721, HepG2, and Hep3B) and 65 cases of HBV-associated HCC following LT were analyzed by RT-PCR (RT, reverse-transcriptase), immunohistochemistry, and methylation-specific polymerase chain reaction (PCR). RESULTS XAF1 transcripts were not observed or present at low levels in liver cancer cell lines and were restored by treatment with demethylating agent 5-aza-2'-deoxycytidine (5-Aza-dC). In vivo, methylation status was associated with protein level of XAF1 (P < 0.001) and serum level of alpha-fetoprotein (AFP) (P = 0.009). The expression pattern of XAF1 was associated with portal vein tumor thrombi (PVTT), preoperative AFP level, tumor size, and recurrence. Multivariate analysis revealed that expression level of XAF1 was an independent factor for predicting recurrence-free survival [hazard ratio 0.237, 95% confidence interval (CI) 0.095-0.592, P = 0.002]. However, no significant association was found between methylation status and the risk of tumor recurrence. CONCLUSION Promoter hypermethylation is a critical, but not the sole, mechanism for gene silencing of XAF1 in HCC. Protein level of XAF1 may serve as a potential biomarker for tumor recurrence after LT.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Aged
- Apoptosis Regulatory Proteins
- Azacitidine/pharmacology
- Carcinoma, Hepatocellular/complications
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/surgery
- DNA Methylation
- Female
- Gene Expression Regulation, Neoplastic
- Hepatitis B/complications
- Hepatitis B/genetics
- Hepatitis B/virology
- Hepatitis B virus/genetics
- Humans
- Immunoenzyme Techniques
- Intracellular Signaling Peptides and Proteins
- Liver Neoplasms/complications
- Liver Neoplasms/genetics
- Liver Neoplasms/surgery
- Liver Transplantation
- Male
- Middle Aged
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/surgery
- Prognosis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Retrospective Studies
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
- Zinc Fingers
Collapse
Affiliation(s)
- Feng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Key Lab of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
25
|
LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene 2008; 27:6252-75. [PMID: 18931692 DOI: 10.1038/onc.2008.302] [Citation(s) in RCA: 363] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage, chromosomal abnormalities, oncogene activation, viral infection, substrate detachment and hypoxia can all trigger apoptosis in normal cells. However, cancer cells acquire mutations that allow them to survive these threats that are part and parcel of the transformation process or that may affect the growth and dissemination of the tumor. Eventually, cancer cells accumulate further mutations that make them resistant to apoptosis mediated by standard cytotoxic chemotherapy or radiotherapy. The inhibitor of apoptosis (IAP) family members, defined by the presence of a baculovirus IAP repeat (BIR) protein domain, are key regulators of cytokinesis, apoptosis and signal transduction. Specific IAPs regulate either cell division, caspase activity or survival pathways mediated through binding to their BIR domains, and/or through their ubiquitin-ligase RING domain activity. These protein-protein interactions and post-translational modifications are the subject of intense investigations that shed light on how these proteins contribute to oncogenesis and resistance to therapy. In the past several years, we have seen multiple approaches of IAP antagonism enter the clinic, and the rewards of such strategies are about to reap benefit. Significantly, small molecule pan-IAP antagonists that mimic an endogenous inhibitor of the IAPs, called Smac, have demonstrated an unexpected ability to sensitize cancer cells to tumor necrosis factor-alpha and to promote autocrine or paracrine production of this cytokine by the tumor cell and possibly, other cells too. This review will focus on these and other developmental therapeutics that target the IAPs in cancer.
Collapse
Affiliation(s)
- E C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Langemeijer SMC, de Graaf AO, Jansen JH. IAPs as therapeutic targets in haematological malignancies. Expert Opin Ther Targets 2008; 12:981-93. [PMID: 18620520 DOI: 10.1517/14728222.12.8.981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Ohkura-Hada S, Kondoh N, Hada A, Arai M, Yamazaki Y, Shindoh M, Kitagawa Y, Takahashi M, Ando T, Sato Y, Yamamoto M. Carbonyl Reductase 3 (CBR3) Mediates 9-cis-Retinoic Acid-Induced Cytostatis and is a Potential Prognostic Marker for Oral Malignancy. Open Dent J 2008; 2:78-88. [PMID: 19088887 PMCID: PMC2581532 DOI: 10.2174/1874210600802010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 03/19/2008] [Accepted: 05/09/2008] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms of growth suppression by retinoic acid (RA) were examined. Our results suggest that the cytostatic effects of RA could be mediated by the activation of endogenous CBR3 gene in oral squamous cell carcinomas (OSCCs), and the expression is a potential marker for oral malignancy.
Collapse
Affiliation(s)
- Shuri Ohkura-Hada
- Department of Biochemistry, National Defense Medical College, 3-2 Namiki, Tokorozawa-shi
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sun Y, Qiao L, Xia HHX, Lin MCM, Zou B, Yuan Y, Zhu S, Gu Q, Cheung TK, Kung HF, Yuen MF, Chan AO, Wong BCY. Regulation of XAF1 expression in human colon cancer cell by interferon beta: activation by the transcription regulator STAT1. Cancer Lett 2008; 260:62-71. [PMID: 18035482 DOI: 10.1016/j.canlet.2007.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/13/2007] [Accepted: 10/15/2007] [Indexed: 02/07/2023]
Abstract
XIAP-associated factor 1 (XAF1) is a novel tumor suppressor and interferon stimulated gene (ISG). Interferon beta (IFNbeta) exerts anti-proliferative effect and induces apoptosis through the Jak-Stat signaling cascade by the type I Interferon receptor (IFN-R), which initiates gene transcription of those biological effectors of IFNbeta. The aim of this study is to determine the effect of IFNbeta on XAF1 expression and the putative mechanisms mediated by the critical role of signal transducers and activators of transcription 1 (Stat1). Gene expression was detected by RT-PCR and Western blot analysis. The promoter activity of XAF1 was examined by luciferase reporter assay. The activity of interferon stimulated response element (ISRE) was assessed by electrophoretic mobility shift assay (EMSA) and quantitative chromatin immunoprecipitation assay (Q-ChIP). Results showed that IFNbeta stimulated XAF1 promoter activity in colon cancer cell line DLD1 in a time- and dose-dependent manner. A high affinity ISRE binding element (ISRE-XAF1) was located in -55 to -66 nt upstream of the first ATG site of XAF1 gene. Deletion of ISRE-XAF1 completely abrogated basal and IFNbeta-induced promoter activity. IFNbeta-induced XAF1 expression was mediated by Stat1 through the interaction with ISRE-XAF1. Knocking down of the Stat1 expression and blocking its phosphorylation decreased IFNbeta-induced XAF1 expression. Results suggested that induction of an immediate early response gene-XAF1 by IFNbeta was mediated by the transcription regulator Stat1 through the ISRE site within the promoter region of XAF1 gene in colon cancer.
Collapse
Affiliation(s)
- Yunwei Sun
- Division of Gastroenterology, Ruijin Hospital, Department of Medicine, The Shanghai Jiao Tong University, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF, Dubowski TD, Sodhi CP, Hackam DJ. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. THE JOURNAL OF IMMUNOLOGY 2007; 179:4808-20. [PMID: 17878380 DOI: 10.4049/jimmunol.179.7.4808] [Citation(s) in RCA: 365] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in preterm infants and is characterized by translocation of LPS across the inflamed intestine. We hypothesized that the LPS receptor (TLR4) plays a critical role in NEC development, and we sought to determine the mechanisms involved. We now demonstrate that NEC in mice and humans is associated with increased expression of TLR4 in the intestinal mucosa and that physiological stressors associated with NEC development, namely, exposure to LPS and hypoxia, sensitize the murine intestinal epithelium to LPS through up-regulation of TLR4. In support of a critical role for TLR4 in NEC development, TLR4-mutant C3H/HeJ mice were protected from the development of NEC compared with wild-type C3H/HeOUJ littermates. TLR4 activation in vitro led to increased enterocyte apoptosis and reduced enterocyte migration and proliferation, suggesting a role for TLR4 in intestinal repair. In support of this possibility, increased NEC severity in C3H/HeOUJ mice resulted from increased enterocyte apoptosis and reduced enterocyte restitution and proliferation after mucosal injury compared with mutant mice. TLR4 signaling also led to increased serine phosphorylation of intestinal focal adhesion kinase (FAK). Remarkably, TLR4 coimmunoprecipitated with FAK, and small interfering RNA-mediated FAK inhibition restored enterocyte migration after TLR4 activation, demonstrating that the FAK-TLR4 association regulates intestinal healing. These findings demonstrate a critical role for TLR4 in the development of NEC through effects on enterocyte injury and repair, identify a novel TLR4-FAK association in regulating enterocyte migration, and suggest TLR4/FAK as a therapeutic target in this disease.
Collapse
Affiliation(s)
- Cynthia L Leaphart
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Magnusson C, Ehrnström R, Olsen J, Sjölander A. An increased expression of cysteinyl leukotriene 2 receptor in colorectal adenocarcinomas correlates with high differentiation. Cancer Res 2007; 67:9190-8. [PMID: 17909024 DOI: 10.1158/0008-5472.can-07-0771] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased levels of inflammatory mediators such as cysteinyl leukotrienes (CysLT) have been found in and around tumors. These data, along with our previous observation that the G-protein-coupled receptor CysLT(1)R, which signals survival and proliferation, is up-regulated in colon cancer, suggest an important role for CysLT(1)R in tumor development. The objective of this study was to examine the expression and function of the low-affinity CysLT2 receptor (CysLT2R) in colon cancer. We found lower expression levels of CysLT2R compared with CysLT(1)R in cancer cell lines as well as clinical tumor material. Interestingly, CysLT2R, like CysLT(1)R, was found to be one of few G-protein-coupled receptors that are located both at the plasma membrane and the nuclear membrane. No effect of CysLT2R signaling on cell proliferation was observed, nor was there a correlation between CysLT2R and different proliferation markers such as Ki-67 and cyclooxygenase-2 in the tumor material. Instead, we found that activation of this receptor in colon cancer cells led to cellular differentiation similar to the effects of butyrate treatment. In accordance with this finding, we found that reduced expression of CysLT2R in colon cancer was associated with poor prognosis. We report the novel finding that CysLT2R signaling leads to terminal differentiation of colon carcinoma cells and growth inhibition, and that its expression is relatively high in less malignant forms of colon cancer. These data suggest that the balance between these two receptors is important for tumor progression and disease outcome.
Collapse
Affiliation(s)
- Cecilia Magnusson
- Division of Cell and Experimental Pathology, Lund University, Malmö University Hospital, Malmö, Sweden
| | | | | | | |
Collapse
|
31
|
Abstract
Apoptosis has been accepted as a fundamental component in the pathogenesis of cancer, in addition to other human diseases including neurodegeneration, coronary disease and diabetes. The origin of cancer involves deregulated cellular proliferation and the suppression of apoptotic processes, ultimately leading to tumor establishment and growth. Several lines of evidence point toward the IAP family of proteins playing a role in oncogenesis, via their effective suppression of apoptosis. The central mechanisms of IAP apoptotic suppression appear to be through direct caspase and pro-caspase inhibition (primarily caspase 3 and 7) and modulation of, and by, the transcription factor NF-kappaB. Thus, when the IAPs are over-expressed or over-active, as is the case in many cancers, cells are no longer able to die in a physiologically programmed fashion and become increasingly resistant to standard chemo- and radiation therapies. To date several approaches have been taken to target and eliminate IAP function in an attempt to re-establish sensitivity, reduce toxicity, and improve efficacy of cancer treatment. In this review, we address IAP proteins as therapeutic targets for the treatment of cancer and emphasize the importance of novel therapeutic approaches for cancer therapy. Novel targets of IAP function are being identified and include gene therapy strategies and small molecule inhibitors that are based on endogenous IAP antagonists. As well, molecular mechanistic approaches, such as RNAi to deplete IAP expression, are in development.
Collapse
Affiliation(s)
- Allison M Hunter
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, Canada, K1H 8L1
| | | | | |
Collapse
|
32
|
Tliba O, Damera G, Banerjee A, Gu S, Baidouri H, Keslacy S, Amrani Y. Cytokines induce an early steroid resistance in airway smooth muscle cells: novel role of interferon regulatory factor-1. Am J Respir Cell Mol Biol 2007; 38:463-72. [PMID: 17947510 DOI: 10.1165/rcmb.2007-0226oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have previously shown that long-term treatment of airway smooth muscle (ASM) cells with a combination of TNF-alpha and IFN-gamma impaired steroid anti-inflammatory action through the up-regulation of glucocorticoid receptor beta isoform (GRbeta) (Mol Pharmacol 2006;69:588-596). We here found that steroid actions could also be suppressed by short-term exposure of ASM cells to TNF-alpha and IFN-gamma (6 h) as shown by the abrogated glucocorticoid responsive element (GRE)-dependent gene transcription; surprisingly, neither GRalpha nuclear translocation nor GRbeta expression was affected by cytokine mixture. The earlier induction of CD38, a molecule recently involved in asthma, seen with TNF-alpha and IFN-gamma combination but not with cytokine alone, was also completely insensitive to steroid pretreatment. Chromatin-immunoprecipitation (IP) and siRNA strategies revealed not only increased binding of interferon regulatory factor 1 (IRF-1) transcription factor to CD38 promoter, but also its implication in regulating CD38 gene transcription. Interestingly, the capacity of fluticasone to completely inhibit TNF-alpha-induced IRF-1 expression, IRF-1 DNA binding, and transactivation activities was completely lost in cells exposed to TNF-alpha and IFN-gamma in combination. This early steroid dysfunction seen with cytokine combination could be reproduced by enhancing IRF-1 cellular levels using constitutively active IRF-1, which dose-dependently inhibited GRE-dependent gene transcription. Consistently, reducing IRF-1 cellular levels using siRNA approach significantly restored steroid transactivation activities. Collectively, our findings demonstrate for the first time that IRF-1 is a novel alternative GRbeta-independent mechanism mediating steroid dysfunction induced by pro-asthmatic cytokines, in part via the suppression of GRalpha activities.
Collapse
Affiliation(s)
- Omar Tliba
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania, 125 South 31st Street, TRL Suite 1200, Room 1214, Philadelphia, PA 19104-3403, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chung SK, Lee MG, Ryu BK, Lee JH, Han J, Byun DS, Chae KS, Lee KY, Jang JY, Kim HJ, Chi SG. Frequent alteration of XAF1 in human colorectal cancers: implication for tumor cell resistance to apoptotic stresses. Gastroenterology 2007; 132:2459-77. [PMID: 17570219 DOI: 10.1053/j.gastro.2007.04.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 02/22/2007] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS X-linked inhibitor of apoptosis protein-associated factor 1 (XAF1) is a candidate tumor suppressor located at the chromosome 17p13 region, but the molecular basis underlying its inactivation in human tumors and growth-inhibiting function has not been well defined. We explored the candidacy of XAF1 as a suppressor in colorectal tumorigenesis. METHODS XAF1 expression was characterized by polymerase chain reaction-based cloning, isoform-specific polymerase chain reaction, ribonuclease protection, and immunoblot assays. Allelic loss of the gene was evaluated by loss of heterozygosity (LOH) assay, and promoter CG dinucleotide (CpG) site methylation was determined using bisulfite sequencing. The effect of XAF1 on tumor growth was examined using flow cytometry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, colony formation, and viability assays. RESULTS Expression of 5 XAF1 variants including 2 novel transcripts was down-regulated concomitantly in 11 of 20 (55%) cell lines and 26 of 65 (40%) primary tumors. XAF1 reduction was tumor-specific and showed a correlation with advanced stage and high grade of tumor. LOH of the gene was found in 12 of 33 (36%) tumors. Promoter CpG site methylation was observed frequently in both cell lines and tumor tissues including many LOH tumors, suggesting that biallelic inactivation of XAF1 might be common in colorectal cancers. XAF1 expression suppressed tumor cell growth and enhanced cellular response to various apoptotic stimuli, such as 5-fluorouracil, etoposide, H(2)O(2), gamma-irradiation, ultraviolet, and tumor necrosis factor-alpha, whereas knockdown of its expression protected cells from the stresses. CONCLUSIONS Genetic and epigenetic alteration of XAF1 is a common event in colorectal tumorigenesis and contributes to the malignant tumor progression by providing survival advantages for tumor cells under various stress conditions.
Collapse
Affiliation(s)
- Sun-Ku Chung
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yu LF, Wang J, Zou B, Lin MCM, Wu YL, Xia HHX, Sun YW, Gu Q, He H, Lam SK, Kung HF, Wong BCY. XAF1 mediates apoptosis through an extracellular signal-regulated kinase pathway in colon cancer. Cancer 2007; 109:1996-2003. [PMID: 17385215 DOI: 10.1002/cncr.22624] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND XIAP-associated factor 1 (XAF1) negatively regulates the function of the X-linked inhibitor of apoptosis protein (XIAP), a member of the IAP family that exerts antiapoptotic effects. The extracellular signal-regulated kinase (ERK) pathway is thought to increase cell proliferation and to protect cells from apoptosis. The aim of the study was to investigate the correlation between the ERK1/2 signaling pathway and XAF1 in colon cancer. METHODS Four human colon cancer cell lines, HCT1116 and Lovo (wildtype p53), DLD1 and SW1116 (mutant p53), were used. Lovo stable transfectants with XAF1 sense and antisense were established. The effects of dominant-negative MEK1 (DN-MEK1) and MEK-specific inhibitor U0126 on the ERK signaling pathway and expression of XAF1 and XIAP proteins were determined. The transcription activity of core XAF1 promoter was assessed by dual luciferase reporter assay. Cell proliferation was measured by MTT assay. Apoptosis was determined by Hoechst 33258 staining. RESULTS U0126 increased the expression of XAF1 in a time- and dose-dependent manner. A similar result was obtained in cells transfected with DN-MEK1 treatment. Conversely, the expression of XIAP was down-regulated. Activity of the putative promoter of the XAF1 gene was significantly increased by U0126 treatment and DN-MEK1 transient transfection. rhEGF-stimulated phosphorylation of ERK appeared to have little or no effect on XAF1 expression. Overexpression of XAF1 was more sensitive to U0126-induced apoptosis, whereas down-regulation of XAF1 by antisense reversed U0126-induced inhibition of cell proliferation. CONCLUSIONS XAF1 expression was up-regulated by inhibition of the ERK1/2 pathway through transcriptional regulation, which required de novo protein synthesis. The results suggest that XAF1 mediates apoptosis induced by the ERK1/2 pathway in colon cancer.
Collapse
Affiliation(s)
- Li Fen Yu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-beta. BMC Cancer 2007; 7:52. [PMID: 17376236 PMCID: PMC1845166 DOI: 10.1186/1471-2407-7-52] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 03/21/2007] [Indexed: 01/03/2023] Open
Abstract
Background XIAP-associated factor 1 (XAF1) is a putative tumor suppressor that exerts its proapoptotic effects through both caspase-dependent and – independent means. Loss of XAF1 expression through promoter methylation has been implicated in the process of tumorigenesis in a variety of cancers. In this report, we investigated the role of basal xaf1 promoter methylation in xaf1 expression and assessed the responsiveness of cancer cell lines to XAF1 induction by IFN-β. Methods We used the conventional bisulfite DNA modification and sequencing method to determine the methylation status in the CpG sites of xaf1 promoter in glioblastoma (SF539, SF295), neuroblastoma (SK-N-AS) and cervical carcinoma (HeLa) cells. We analysed the status and incidence of basal xaf1 promoter methylation in xaf1 expression in non-treated cells as well as under a short or long exposure to IFN-β. Stable XAF1 glioblastoma knock-down cell lines were established to characterize the direct implication of XAF1 in IFN-β-mediated sensitization to TRAIL-induced cell death. Results We found a strong variability in xaf1 promoter methylation profile and responsiveness to IFN-β across the four cancer cell lines studied. At the basal level, aberrant promoter methylation was linked to xaf1 gene silencing. After a short exposure, the IFN-β-mediated reactivation of xaf1 gene expression was related to the degree of basal promoter methylation. However, in spite of continued promoter hypermethylation, we find that IFN-β induced a transient xaf1 expression, that in turn, was followed by promoter demethylation upon a prolonged exposure. Importantly, we demonstrated for the first time that IFN-β-mediated reactivation of endogenous XAF1 plays a critical role in TRAIL-induced cell death since XAF1 knock-down cell lines completely lost their IFN-β-mediated TRAIL sensitivity. Conclusion Together, these results suggest that promoter demethylation is not the sole factor determining xaf1 gene induction under IFN-β treatment. Furthermore, our study provides evidence that XAF1 is a crucial interferon-stimulated gene (ISG) mediator of IFN-induced sensitization to TRAIL in cancer.
Collapse
|