1
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Nwaduru C, Ovalle LA, Hoareau GL, Baker E, Buff M, Selim M, Baker TB, Zimmerman MA. Ectonucleotidases in Ischemia Reperfusion Injury: Unravelling the Interplay With Mitochondrial Dysfunction in Liver Transplantation. Transplant Proc 2024; 56:1598-1606. [PMID: 39183080 DOI: 10.1016/j.transproceed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Ischemia-reperfusion injury (IRI) profoundly impacts organ transplantation, especially in orthotopic liver transplantation (OLT). Disruption of the mitochondrial respiratory chain during ischemia leads to ATP loss and ROS production. Reperfusion exacerbates mitochondrial damage, triggering the release of damage-associated molecular patterns (DAMPs) and inflammatory responses. Mitochondrial dysfunction, a pivotal aspect of IRI, is explored in the context of the regulatory role of ectonucleotidases in purinergic signaling and immune responses. CD39, by hydrolyzing ATP and ADP; and CD73, by converting AMP to adenosine, emerge as key players in mitigating liver IRI, particularly through ischemic preconditioning and adenosine receptor signaling. Despite established roles in vascular health and immunity, the impact of ectonucleotidases on mitochondrial function during hepatic IRI is unclear. This review aims to elucidate the interplay between CD39/73 and mitochondria, emphasizing their potential as therapeutic targets for liver transplantation. This article explores the role of CD39/73 in tissue hypoxia, emphasizing adenosine production during inflammation. CD39 and CD73 upregulation under hypoxic conditions regulate immune responses, demonstrating protective effects in various organ-specific ischemic models. However, prolonged adenosine activation may have dual effects, beneficial in acute settings but detrimental in chronic hypoxia. Herein, we raise questions about ectonucleotidases influencing mitochondrial function during hepatic IRI, drawing parallels with cancer cell responses to chemotherapy. The review underscores the need for comprehensive research into the intricate interplay between ectonucleotidases, mitochondrial dynamics, and their therapeutic implications in hepatic IRI, providing valuable insights for advancing transplantation outcomes.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guillaume L Hoareau
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
3
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
4
|
Wang B, Zhou A, Pan Q, Li Y, Xi Z, He K, Li D, Li B, Liu Y, Liu Y, Xia Q. Adenosinergic metabolism pathway: an emerging target for improving outcomes of solid organ transplantation. Transl Res 2024; 263:93-101. [PMID: 37678756 DOI: 10.1016/j.trsl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Extracellular nucleotides are widely recognized as crucial modulators of immune responses in peripheral tissues. Adenosine triphosphate (ATP) and adenosine are key components of extracellular nucleotides, the balance of which contributes to immune homeostasis. Under tissue injury, ATP exerts its pro-inflammatory function, while the adenosinergic pathway rapidly degrades ATP to immunosuppressive adenosine, thus inhibiting excessive and uncontrolled inflammatory responses. Previous reviews have explored the immunoregulatory role of extracellular adenosine in various pathological conditions, especially inflammation and malignancy. However, current knowledge regarding adenosine and adenosinergic metabolism in the context of solid organ transplantation remains fragmented. In this review, we summarize the latest information on adenosine metabolism and the mechanisms by which it suppresses the effector function of immune cells, as well as highlight the protective role of adenosine in all stages of solid organ transplantation, including reducing ischemia reperfusion injury during organ procurement, alleviating rejection, and promoting graft regeneration after transplantation. Finally, we discuss the potential for future clinical translation of adenosinergic pathway in solid organ transplantation.
Collapse
Affiliation(s)
- Bingran Wang
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Aiwei Zhou
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Qi Pan
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Zhifeng Xi
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yuan Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
5
|
Arunachalam AR, Samuel SS, Mani A, Maynard JP, Stayer KM, Dybbro E, Narayanan S, Biswas A, Pathan S, Soni K, Kamal AHM, Ambati CSR, Putluri N, Desai MS, Thevananther S. P2Y2 purinergic receptor gene deletion protects mice from bacterial endotoxin and sepsis-associated liver injury and mortality. Am J Physiol Gastrointest Liver Physiol 2023; 325:G471-G491. [PMID: 37697947 PMCID: PMC10812707 DOI: 10.1152/ajpgi.00090.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu. P2Y2 purinergic receptors, G protein-coupled and activated by extracellular ATP/UTP, are expressed at the cell surface of hepatocytes and nonparenchymal cells. We sought to determine whether P2Y2 purinergic receptor function is necessary for the maladaptive host response to bacterial infection and endotoxin-mediated inflammatory liver injury and mortality in mice. We report that P2Y2 purinergic receptor knockout mice (P2Y2-/-) had attenuated inflammation and liver injury, with improved survival in response to LPS/galactosamine (LPS/GalN; inflammatory liver injury) and cecal ligation and puncture (CLP; polymicrobial sepsis). P2Y2-/- livers had attenuated c-Jun NH2-terminal kinase activation, matrix metallopeptidase-9 expression, and hepatocyte apoptosis in response to LPS/GalN and attenuated inducible nitric oxide synthase and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 protein expression in response to CLP. Implicating liver injury in the disruption of amino acid homeostasis, CLP led to lower serum arginine and higher bacterial load and morbidity in the WT mice, whereas serum arginine levels were comparable to sham-operated controls in P2Y2-/- mice, which had attenuated bacteremia and improved survival. Collectively, our studies highlight the pathophysiological relevance of P2Y2 purinergic receptor function in inflammatory liver injury and dysregulation of systemic amino acid homeostasis with implications for sepsis-associated immune dysfunction and morbidity in mice.NEW & NOTEWORTHY Our studies provide experimental evidence for P2Y2 purinergic receptor-mediated potentiation of inflammatory liver injury, morbidity, and mortality, in two well-established animal models of inflammatory liver injury. Our findings highlight the potential to target P2Y2 purinergic signaling to attenuate the induction of "cytokine storm" and prevent its deleterious consequences on liver function, systemic amino acid homeostasis, host response to bacterial infection, and sepsis-associated morbidity and mortality.
Collapse
Affiliation(s)
- Athis R Arunachalam
- Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sanju S Samuel
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Arunmani Mani
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Janielle P Maynard
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kelsey M Stayer
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Eric Dybbro
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Subapradha Narayanan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Aalekhya Biswas
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Saliha Pathan
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Krishnakant Soni
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Moreshwar S Desai
- Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Sundararajah Thevananther
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
6
|
Inhibition of Vascular Endothelial Growth Factor Protects against the Development of Oxaliplatin-Induced Sinusoidal Obstruction Syndrome in Wild-Type but Not in CD39-Null Mice. Cancers (Basel) 2022; 14:cancers14235992. [PMID: 36497474 PMCID: PMC9739893 DOI: 10.3390/cancers14235992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Sinusoidal obstruction syndrome (SOS) after oxaliplatin-based chemotherapy is associated with unfavorable outcomes after partial hepatectomy for colorectal liver metastases (CLM). Bevacizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF), may prevent SOS development. We investigated the impact of VEGF-inhibition on the development of SOS in a murine model. (2) Methods: Male wild-type and CD39-null mice received oxaliplatin, additional anti-VEGF (OxAV), or controls, and were sacrificed or subjected to major partial hepatectomy (MH). Specimen were used for histological analysis of SOS. Liver damage was assessed by plasma transaminases. The VEGF pathway was elucidated by quantitative PCR of liver tissue and protein analysis of plasma. (3) Results: Mice treated with oxaliplatin developed SOS. Concomitant anti-VEGF facilitated a reduced incidence of SOS, but not in CD39-null mice. SOS was associated with increased plasma VEGF-A and decreased hepatocyte growth factor (HGF). After OxAV treatment, VEGF-R2 was upregulated in wild-type but downregulated in CD39-null mice. Oxaliplatin alone was associated with higher liver damage after MH than in mice with concomitant VEGF-inhibition. (4) Conclusions: We established a murine model of oxaliplatin-induced SOS and provided novel evidence on the protective effect of VEGF-inhibition against the development of SOS that may be associated with changes in the pathway of VEGF and its receptor VEGF-R2.
Collapse
|
7
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022; 15:111. [PMID: 35978433 PMCID: PMC9386972 DOI: 10.1186/s13045-022-01325-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
8
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022. [PMID: 35978433 DOI: 10.1186/s13045-022-01325-0.pmid:35978433;pmcid:pmc9386972.[125]robertc.adecadeofimmune-checkpointinhibitorsincancertherapy.natcommun.2020jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.pmid:32732879;pmcid:pmc7393098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
9
|
Hanidziar D, Robson SC. Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol Gastrointest Liver Physiol 2021; 321:G200-G212. [PMID: 34105986 PMCID: PMC8410108 DOI: 10.1152/ajpgi.00406.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatosplanchnic and pulmonary vasculatures constitute synapomorphic, highly comparable networks integrated with the external environment. Given functionality related to obligatory requirements of "feeding and breathing," these organs are subject to constant environmental challenges entailing infectious risk, antigenic and xenobiotic exposures. Host responses to these stimuli need to be both protective and tightly regulated. These functions are facilitated by dualistic, high-low pressure blood supply of the liver and lungs, as well as tolerogenic characteristics of resident immune cells and signaling pathways. Dysregulation in hepatosplanchnic and pulmonary blood flow, immune responses, and microbiome implicate common pathogenic mechanisms across these vascular networks. Hepatosplanchnic diseases, such as cirrhosis and portal hypertension, often impact lungs and perturb pulmonary circulation and oxygenation. The reverse situation is also noted with lung disease resulting in hepatic dysfunction. Others, and we, have described common features of dysregulated cell signaling during liver and lung inflammation involving extracellular purines (e.g., ATP, ADP), either generated exogenously or endogenously. These metabokines serve as danger signals, when released by bacteria or during cellular stress and cause proinflammatory and prothrombotic signals in the gut/liver-lung vasculature. Dampening of these danger signals and organ protection largely depends upon activities of vascular and immune cell-expressed ectonucleotidases (CD39 and CD73), which convert ATP and ADP into anti-inflammatory adenosine. However, in many inflammatory disorders involving gut, liver, and lung, these protective mechanisms are compromised, causing perpetuation of tissue injury. We propose that interventions that specifically target aberrant purinergic signaling might prevent and/or ameliorate inflammatory disorders of the gut/liver and lung axis.
Collapse
Affiliation(s)
- Dusan Hanidziar
- 1Department of Anesthesia, Critical Care and Pain Medicine, grid.32224.35Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- 2Department of Anesthesia, Critical Care and Pain Medicine, Center for Inflammation Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,3Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Role of Purinergic Signalling in Endothelial Dysfunction and Thrombo-Inflammation in Ischaemic Stroke and Cerebral Small Vessel Disease. Biomolecules 2021; 11:biom11070994. [PMID: 34356618 PMCID: PMC8301873 DOI: 10.3390/biom11070994] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The cerebral endothelium is an active interface between blood and the central nervous system. In addition to being a physical barrier between the blood and the brain, the endothelium also actively regulates metabolic homeostasis, vascular tone and permeability, coagulation, and movement of immune cells. Being part of the blood–brain barrier, endothelial cells of the brain have specialized morphology, physiology, and phenotypes due to their unique microenvironment. Known cardiovascular risk factors facilitate cerebral endothelial dysfunction, leading to impaired vasodilation, an aggravated inflammatory response, as well as increased oxidative stress and vascular proliferation. This culminates in the thrombo-inflammatory response, an underlying cause of ischemic stroke and cerebral small vessel disease (CSVD). These events are further exacerbated when blood flow is returned to the brain after a period of ischemia, a phenomenon termed ischemia-reperfusion injury. Purinergic signaling is an endogenous molecular pathway in which the enzymes CD39 and CD73 catabolize extracellular adenosine triphosphate (eATP) to adenosine. After ischemia and CSVD, eATP is released from dying neurons as a damage molecule, triggering thrombosis and inflammation. In contrast, adenosine is anti-thrombotic, protects against oxidative stress, and suppresses the immune response. Evidently, therapies that promote adenosine generation or boost CD39 activity at the site of endothelial injury have promising benefits in the context of atherothrombotic stroke and can be extended to current CSVD known pathomechanisms. Here, we have reviewed the rationale and benefits of CD39 and CD39 therapies to treat endothelial dysfunction in the brain.
Collapse
|
11
|
Lu J, Zhao YL, Zhang XQ, Li LJ. The vascular endothelial growth factor signaling pathway regulates liver sinusoidal endothelial cells during liver regeneration after partial hepatectomy. Expert Rev Gastroenterol Hepatol 2021; 15:139-147. [PMID: 32902336 DOI: 10.1080/17474124.2020.1815532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Liver regeneration after partial hepatectomy is a very complex and well-regulated procedure. It utilizes all liver cell types, which are associated with signaling pathways involving growth factors, cytokines, and stimulatory and inhibitory feedback of several growth-related signals. Liver sinusoidal endothelial cells (LSECs) contribute to liver regeneration after partial hepatectomy. Vascular endothelial growth factor (VEGF) has various functions in LSECs. In this review, we summarize the relationship between VEGF and LSECs involving VEGF regulatory activity in the vascular endothelium. AREAS COVERED Maintenance of the fenestrated LSEC phenotype requires two VEGF pathways: VEGF stimulated-NO acting through the cGMP pathway and VEGF independent of nitric oxide (NO). The results suggest that VEGF is a key regenerating mediator of LSECs in the partial hepatectomy model. NO-independent pathway was also essential to the maintenance of the LSEC in liver regeneration. EXPERT OPINION Liver regeneration remains a fascinating and significative research field in recent years. The liver involved of molecular pathways except for LSEC-VEGF pathways that make the field of liver further depth studies should be put into effect to elaborate the undetermined confusions, which will be better to understand liver regeneration.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Ya-Lei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Xiao-Qian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University , Hangzhou, China
| |
Collapse
|
12
|
Goncharov NV, Popova PI, Avdonin PP, Kudryavtsev IV, Serebryakova MK, Korf EA, Avdonin PV. Markers of Endothelial Cells in Normal and Pathological Conditions. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020; 14:167-183. [PMID: 33072245 PMCID: PMC7553370 DOI: 10.1134/s1990747819030140] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
Abstract
Endothelial cells (ECs) line the blood vessels and lymphatic vessels, as well as heart chambers, forming the border between the tissues, on the one hand, and blood or lymph, on the other. Such a strategic position of the endothelium determines its most important functional role in the regulation of vascular tone, hemostasis, and inflammatory processes. The damaged endothelium can be both a cause and a consequence of many diseases. The state of the endothelium is indicated by the phenotype of these cells, represented mainly by (trans)membrane markers (surface antigens). This review defines endothelial markers, provides a list of them, and considers the mechanisms of their expression and the role of the endothelium in certain pathological conditions.
Collapse
Affiliation(s)
- N V Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia.,Research Institute of Hygiene, Occupational Pathology and Human Ecology, 188663 p.o. Kuz'molovskii, Leningrad oblast Russia
| | - P I Popova
- City Polyclinic no. 19, 142238 St. Petersburg, Russia
| | - P P Avdonin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - I V Kudryavtsev
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia.,Far-East Federal University, 690091 Vladivostok, Russia
| | - M K Serebryakova
- Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - E A Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - P V Avdonin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
13
|
Platelets Boost Recruitment of CD133 + Bone Marrow Stem Cells to Endothelium and the Rodent Liver-The Role of P-Selectin/PSGL-1 Interactions. Int J Mol Sci 2020; 21:ijms21176431. [PMID: 32899390 PMCID: PMC7504029 DOI: 10.3390/ijms21176431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that clinical administration of mobilized CD133+ bone marrow stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4 had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia, the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened transmigration towards the extra sinusoidal space when compared to perfusion conditions without platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights suggest a new mechanism of platelets to augment stem cell dependent hepatic repair.
Collapse
|
14
|
Ecto-Nucleotide Triphosphate Diphosphohydrolase-2 (NTPDase2) Deletion Increases Acetaminophen-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21175998. [PMID: 32825435 PMCID: PMC7504458 DOI: 10.3390/ijms21175998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Ecto-nucleotidase triphosphate diphosphohydrolase-2 (NTPDase2) is an ecto-enzyme that is expressed on portal fibroblasts in the liver that modulates P2 receptor signaling by regulating local concentrations of extracellular ATP and ADP. NTPDase2 has protective properties in liver fibrosis and may impact bile duct epithelial turnover. Here, we study the role of NTPDase2 in acute liver injury using an experimental model of acetaminophen (APAP) intoxication in mice with global deletion of NTPDase2. Acute liver toxicity was caused by administration of acetaminophen in wild type (WT) and NTPDase2-deficient (Entpd2 null) mice. The extent of liver injury was compared by histology and serum alanine transaminase (ALT). Markers of inflammation, regeneration and fibrosis were determined by qPCR). We found that Entpd2 expression is significantly upregulated after acetaminophen-induced hepatotoxicity. Entpd2 null mice showed significantly more necrosis and higher serum ALT compared to WT. Hepatic expression of IL-6 and PDGF-B are higher in Entpd2 null mice. Our data suggest inducible and protective roles of portal fibroblast-expressed NTPDase2 in acute necrotizing liver injury. Further studies should investigate the relevance of these purinergic pathways in hepatic periportal and sinusoidal biology as such advances in understanding might provide possible therapeutic targets.
Collapse
|
15
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
16
|
Balaphas A, Meyer J, Perozzo R, Zeisser-Labouebe M, Berndt S, Turzi A, Fontana P, Scapozza L, Gonelle-Gispert C, Bühler LH. Platelet Transforming Growth Factor-β1 Induces Liver Sinusoidal Endothelial Cells to Secrete Interleukin-6. Cells 2020; 9:1311. [PMID: 32466100 PMCID: PMC7290849 DOI: 10.3390/cells9051311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
The roles and interactions of platelets and liver sinusoidal endothelial cells in liver regeneration are unclear, and the trigger that initiates hepatocyte proliferation is unknown. We aimed to identify the key factors released by activated platelets that induce liver sinusoidal endothelial cells to produce interleukin-6 (IL-6), a cytokine implicated in the early phase of liver regeneration. We characterized the releasate of activated platelets inducing the in vitro production of IL-6 by mouse liver sinusoidal endothelial cells and observed that the stimulating factor was a thermolabile protein. Following gel filtration, a single fraction of activated platelet releasate induced a maximal IL-6 secretion by liver sinusoidal endothelial cells (90.2 ± 13.9 versus control with buffer, 9.0 ± 0.8 pg/mL, p < 0.05). Mass spectroscopy analysis of this fraction, followed by in silico processing, resulted in a reduced list of 18 candidates. Several proteins from the list were tested, and only recombinant transforming growth factor β1 (TGF-β1) resulted in an increased IL-6 production up to 242.7 ± 30.5 pg/mL, which was comparable to non-fractionated platelet releasate effect. Using neutralizing anti-TGF-β1 antibody or a TGF-β1 receptor inhibitor, IL-6 production by liver sinusoidal endothelial cells was dramatically reduced. These results support a role of platelet TGF-β1 β1 in the priming phase of liver regeneration.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland;
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland;
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Remo Perozzo
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.Z.-L.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Magali Zeisser-Labouebe
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.Z.-L.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sarah Berndt
- Regen Lab SA, En Budron b2, 1052 Le Mont-sur-Lausanne, Switzerland; (S.B.); (A.T.)
| | - Antoine Turzi
- Regen Lab SA, En Budron b2, 1052 Le Mont-sur-Lausanne, Switzerland; (S.B.); (A.T.)
| | - Pierre Fontana
- Division of Angiology and Haemostasis, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland;
- Geneva Platelet Group, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; (M.Z.-L.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700 Fribourg, Switzerland; (C.G.-G.); (L.H.B.)
| | - Leo H. Bühler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700 Fribourg, Switzerland; (C.G.-G.); (L.H.B.)
| |
Collapse
|
17
|
Tumor-infiltrating CD39 +CD8 + T cells determine poor prognosis and immune evasion in clear cell renal cell carcinoma patients. Cancer Immunol Immunother 2020; 69:1565-1576. [PMID: 32306075 DOI: 10.1007/s00262-020-02563-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Tumor microenvironment is important in the progression of clear cell renal cell carcinoma (ccRCC), and its prognostic value is still unclear. Recent reports demonstrated tumor-infiltrating CD39+CD8+ T cells are abundant, but their function remains obscure. We aim to assess clinical value of CD39+CD8+ T cells and seek a potential therapeutic target in ccRCC. EXPERIMENTAL DESIGN We immunohistochemically evaluated clinical value of CD39+CD8+ T cells in a retrospective Zhongshan Hospital cohort of 243 ccRCC patients. Fresh tumor samples (n = 48), non-tumor tissues and peripheral blood for flow cytometry analyses were collected to analyze immune cell functions from Zhongshan Hospital. The survival benefit of tyrosine kinase inhibitors (TKIs) in this subpopulation was evaluated. Kaplan-Meier analysis and COX regression model were applied for survival analyses. Bioinformatics analysis performed in TCGA KIRC cohort and the scRNA-seq cohort. RESULTS We found that accumulation of CD39+CD8+ T cells indicated poor prognosis (p < 0.0001) and indicated therapeutic benefit of TKIs therapy (p = 0.015). CD39+CD8+ T cells showed decreased TNF-α and IFN-γ with elevated PD-1 and TIM-3 expression. Further analysis of tumor-infiltrating immune cell landscape in the ccRCC revealed the positive correlation between CD39+CD8+ T cells and Tregs (p = 0.037) and M2-polarized macrophages (p < 0.0001). Finally, inhibition of CD39 partially restores the anti-tumor function of CD8+ T cells. CONCLUSIONS High CD39+CD8+ T cells indicated poor prognosis in ccRCC, due to impaired anti-tumor function of CD39+CD8+ T cells and indicated therapeutic benefit of TKIs therapy.
Collapse
|
18
|
Velázquez-Miranda E, Molina-Aguilar C, González-Gallardo A, Vázquez-Martínez O, Díaz-Muñoz M, Vázquez-Cuevas FG. Increased Purinergic Responses Dependent on P2Y2 Receptors in Hepatocytes from CCl 4-Treated Fibrotic Mice. Int J Mol Sci 2020; 21:ijms21072305. [PMID: 32225112 PMCID: PMC7177255 DOI: 10.3390/ijms21072305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Inflammatory and wound healing responses take place during liver damage, primarily in the parenchymal tissue. It is known that cellular injury elicits an activation of the purinergic signaling, mainly by the P2X7 receptor; however, the role of P2Y receptors in the onset of liver pathology such as fibrosis has not been explored. Hence, we used mice treated with the hepatotoxin CCl4 to implement a reversible model of liver fibrosis to evaluate the expression and function of the P2Y2 receptor (P2Y2R). Fibrotic livers showed an enhanced expression of P2Y2R that eliminated its zonal distribution. Hepatocytes from CCl4-treated mice showed an exacerbated ERK-phosphorylated response to the P2Y2R-specific agonist, UTP. Cell proliferation was also enhanced in the fibrotic livers. Hepatic transcriptional analysis by microarrays, upon CCl4 administration, showed that P2Y2 activation regulated diverse pathways, revealing complex action mechanisms. In conclusion, our data indicate that P2Y2R activation is involved in the onset of the fibrotic damage associated with the reversible phase of the hepatic damage promoted by CCl4.
Collapse
|
19
|
Liu ZN, Jia WQ, Jiang T, Dai JW, Shuai C, Lv XW. Regulation of CD39 expression in ATP-P2Y2R-mediated alcoholic liver steatosis and inflammation. Int Immunopharmacol 2019; 77:105915. [PMID: 31639617 DOI: 10.1016/j.intimp.2019.105915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Inflammation plays a central role in the progression of alcoholic liver disease. ATP-P2Y2R signaling and CD39 play an important role in various diseases, but little is known about their role in alcoholic liver steatosis and inflammation. As a transmembrane hydrolase, CD39 hydrolyzes ATP, while the mutual regulation of CD39 and ATP-P2Y2R in alcoholic steatohepatitis is poorly understood. Here, we found that the expression of ATP, P2Y2R, and CD39 is increased significantly both in the liver of alcohol-fed mice and alcohol-induced RAW264.7 cell lines. In this study, C57BL/6 mice were intrapretationally injected with P2Y2R inhibitor suramin from day 4 until day 10 during the induction of a chronic/binge drinking model. Pharmacological blockade of P2Y2R largely prevents liver damage, lipid accumulation, and inflammation, with concomitant down-expression of CD39 in liver. We found that the inhibition of P2Y2R in vitro reduces inflammation via down-expression of interleukin 6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α), and the expression of CD39 was reduced, whereas the activation of P2Y2R showed an opposite effect. Silencing of CD39 promoted the expression of ATP and P2Y2R. These results indicate that CD39 attenuates alcohol-induced steatohepatitis by scavenging extracellular ATP to indirectly regulate the expression of P2Y2R. Interestingly, P2Y2R paradoxically boosts CD39 activity. Thus, blockade of the extracellular ATP-P2Y2R signalling represents a potential therapeutic approach against alcoholic liver disease, and CD39 is a potential therapeutic target.
Collapse
Affiliation(s)
- Zhen-Ni Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Wen-Qian Jia
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Tao Jiang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jing-Wen Dai
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen Shuai
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
20
|
Kohler A, Moller PW, Frey S, Tinguely P, Candinas D, Obrist D, Jakob SM, Beldi G. Portal hyperperfusion after major liver resection and associated sinusoidal damage is a therapeutic target to protect the remnant liver. Am J Physiol Gastrointest Liver Physiol 2019; 317:G264-G274. [PMID: 31216172 DOI: 10.1152/ajpgi.00113.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extended liver resection results in loss of a large fraction of the hepatic vascular bed, thereby causing abrupt alterations in perfusion of the remnant liver. Mechanisms of hemodynamic adaptation and associated changes in oxygen metabolism after liver resection and the effect of mechanical portal blood flow reduction were assessed. A pig model (n = 16) of extended partial hepatectomy was established that included continuous observation for 24 h under general anesthesia. Pigs were randomly separated into two groups, one with a portal flow reduction of 70% compared with preoperative values, and the other as a control (n = 8, each). In controls, portal flow [mean (SD)] increased from 74 (8) mL·min-1·100 g-1 preoperatively to 240 (48) mL·min-1·100 g-1 at 6 h after resection (P < 0.001). Hepatic arterial buffer response was abolished after resection. Oxygen uptake per unit liver mass increased from 4.0 (1.1) mL·min-1·100 g-1 preoperatively to 7.7 (1.7) mL·min-1·100 g-1 8 h after resection (P = 0.004). Despite this increase in relative oxygen uptake, total hepatic oxygen consumption (V̇o2) was not maintained, and markers of hypoxia and anaerobic metabolism were significantly increased in hepatocytes after resection. Reduced postoperative portal flow was associated with significantly decreased levels of aspartate aminotransferase and bilirubin and increased hepatic clearance of indocyanine green. In conclusion, major liver resection was associated with persistent portal hyperperfusion, loss of the hepatic arterial buffer response, decreased total hepatic V̇o2 and with increased anaerobic metabolism. Portal flow modulation by partial portal vein occlusion attenuated liver injury after extended liver resection.NEW & NOTEWORTHY Because of continuous monitoring, the experiments allow precise observation of the influence of liver resection on systemic and local abdominal hemodynamic alterations and oxygen metabolism. Major liver resection is associated with significant and persistent portal hyperperfusion and loss of hepatic arterial buffer response. The correlation of portal hyperperfusion and parameters of liver injury and dysfunction offers a novel therapeutic option to attenuate liver injury after extended liver resection.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Per W Moller
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabrina Frey
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Pascale Tinguely
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Aouey B, Fares E, Chtourou Y, Bouchard M, Fetoui H. Lambda-cyhalothrin exposure alters purine nucleotide hydrolysis and nucleotidase gene expression pattern in platelets and liver of rats. Chem Biol Interact 2019; 311:108796. [PMID: 31421116 DOI: 10.1016/j.cbi.2019.108796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
Lambda-cyhalothrin (LCT) is a broad-spectrum pesticide widely used in agriculture throughout the world. This pesticide is considered a potential contaminant of surface and underground water as well as food, posing a risk to ecosystems and humans. In this sense, we decided to evaluate the activity of enzymes belonging to the purinergic system, which is linked with regulation of extracellular nucleotides and nucleosides, such as adenosine triphosphate (ATP) and adenosine (Ado) molecules involved in the regulation of inflammatory response. However, there are no data concerning the effects of LCT exposure on the purinergic system, where extracellular nucleotides act as signaling molecules. The aim of this study was to evaluate nucleotide hydrolysis by E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase), Ecto-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase), ecto-5'-nucleotidase and ecto-adenosine deaminase (E-ADA) in platelets and liver of adult rats on days 7, 30, 45 and 60 after daily gavage with 6.2 and 31.1 mg/kg bw of LCT. Gene expression patterns of NTPDases1-3 and 5'-nucleotidase were also determined in those tissues. In parallel, lambda-cyhalothrin metabolites [3-(2-chloro-3,3,3- trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic acid (CFMP), 4-hydroxyphenoxybenzoic acid (4-OH-3-PBA), and 3-phenoxybenzoic acid (3-PBA)] were measured in plasma. Results showed that exposure rats to LCT caused a significant increase in the assessed enzymes activities. Gene expression pattern of ectonucleotidases further revealed a significant increase in E-NTPDase1, E-NTPDase2, and E-NTPDase3 mRNA levels after LCT administration at all times. A dose-dependent increase in LCT metabolite levels was also observed but there no significant variations in levels from weeks to week, suggesting steady-steady equilibrium. Correlation analyses revealed that LCT metabolites in the liver and plasma were positively correlated with the adenine nucleotides hydrolyzing enzyme, E-ADA and E-NPP activities in platelets and liver of rats exposed to lambda-cyhalothin. Our results show that LCT and its metabolites may affect purinergic enzymatic cascade and cause alterations in energy metabolism.
Collapse
Affiliation(s)
- Bakhta Aouey
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Elghali Fares
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, Institute of Research in Publish Health (IRSPUM), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada.
| | - Hamadi Fetoui
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
22
|
Aryal B, Yamakuchi M, Shimizu T, Kadono J, Furoi A, Gejima K, Komokata T, Hashiguchi T, Imoto Y. Therapeutic implication of platelets in liver regeneration -hopes and hues. Expert Rev Gastroenterol Hepatol 2018; 12:1219-1228. [PMID: 30791793 DOI: 10.1080/17474124.2018.1533813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mounting evidence highlights platelet involvement in liver regeneration via interaction with liver cells, growth factors release, and signaling contributions. Existing research suggests a compelling biological rationale for utilizing platelet biology, with the goal of improving liver function and accelerating its regenerative potential. Despite its expanding application in several clinical areas, the contribution of the platelet and its therapeutic implementation in liver regeneration so far has not yet fulfilled the initial high expectations. Areas covered: This review scrutinizes the progress, current updates, and discusses how recent understanding - particularly in the clinical implications of platelet-based therapy - may enable strategies to introduce and harness the therapeutic potential of the platelet during liver regeneration. Expert commentary: Several clinical and translational studies have facilitated a platform for the development of platelet-based therapy to enhance liver regeneration. While some of these therapies are effective to augment liver regeneration, the others have had some detrimental outcomes. The existing evidence represents a challenge for future projects that are focused on directly incorporating platelet-based therapies to induce liver regeneration.
Collapse
Affiliation(s)
- Bibek Aryal
- a Cardiovascular and Gastroenterological Surgery, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Munekazu Yamakuchi
- b Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Toshiaki Shimizu
- b Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Jun Kadono
- c Department of Surgery , Kirishima Medical Center , Kirishima , Japan
| | - Akira Furoi
- c Department of Surgery , Kirishima Medical Center , Kirishima , Japan
| | - Kentaro Gejima
- a Cardiovascular and Gastroenterological Surgery, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Teruo Komokata
- d Department of Surgery , Kagoshima Medical Center . Kagoshima , Japan
| | - Teruto Hashiguchi
- b Department of Laboratory and Vascular Medicine, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| | - Yutaka Imoto
- a Cardiovascular and Gastroenterological Surgery, Graduate School of Medical and Dental Sciences , Kagoshima University , Kagoshima , Japan
| |
Collapse
|
23
|
Mononuclear-cell-derived microparticles attenuate endothelial inflammation by transfer of miR-142-3p in a CD39 dependent manner. Purinergic Signal 2018; 14:423-432. [PMID: 30244433 DOI: 10.1007/s11302-018-9624-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022] Open
Abstract
Plasma microparticles (MP) bear functional active ectonucleotidases of the CD39 family with implications in vascular inflammation. MP appear to be able to fuse with cells and transfer genetic information. Here, we tested whether levels of different immunomodulatory microRNAs (miRs) in plasma MP are modulated by CD39 after experimental hepatectomy. We further investigated whether horizontal transfer of miR-142-3p between mononuclear (MNC) and endothelial cells via MP is regulated by purinergic signaling. Partial hepatectomy was performed in C57BL/6 wild type and Cd39 null mice. MP were collected via ultracentrifugation. MNC were stimulated with nucleotides and nucleosides, in vitro, and tested for miR-142-3p levels. Fusion of MNC-derived MP and endothelial cells with subsequent transfer of miR-142-3p was imaged by flow cytometry and confocal microscopy. Endothelial inflammation and apoptosis were quantified after transfection with miR-142-3p. Significantly lower miR-142-3p levels were observed in plasma MP of Cd39 null mice after partial hepatectomy, when compared to C57BL/6 wild types (p < 0.05). In contrast to extracellular nucleotides, anti-inflammatory adenosine significantly increased miR-142-3p levels in MNC-derived MP, in vitro (p < 0.05). MNC-derived MP are able to transfer miR-142-3p to endothelial cells by fusion. Transfection of endothelial cells with miR-142-3p decreased TNF-α levels (p < 0.05) and endothelial apoptosis (p < 0.05). MiR-142-3p levels in MNC-derived MP are modulated by nucleoside signaling and might reflect compensatory responses in vascular inflammation. Our data suggest the transfer of genetic information via shed MP as a putative mechanism of intercellular communication-with implications in organ regeneration.
Collapse
|
24
|
Carbon monoxide protects the kidney through the central circadian clock and CD39. Proc Natl Acad Sci U S A 2018; 115:E2302-E2310. [PMID: 29463714 DOI: 10.1073/pnas.1716747115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is the predominant tissue insult associated with organ transplantation. Treatment with carbon monoxide (CO) modulates the innate immune response associated with IRI and accelerates tissue recovery. The mechanism has been primarily descriptive and ascribed to the ability of CO to influence inflammation, cell death, and repair. In a model of bilateral kidney IRI in mice, we elucidate an intricate relationship between CO and purinergic signaling involving increased CD39 ectonucleotidase expression, decreased expression of Adora1, with concomitant increased expression of Adora2a/2b. This response is linked to a >20-fold increase in expression of the circadian rhythm protein Period 2 (Per2) and a fivefold increase in serum erythropoietin (EPO), both of which contribute to abrogation of kidney IRI. CO is ineffective against IRI in Cd39-/- and Per2-/- mice or in the presence of a neutralizing antibody to EPO. Collectively, these data elucidate a cellular signaling mechanism whereby CO modulates purinergic responses and circadian rhythm to protect against injury. Moreover, these effects involve CD39- and adenosinergic-dependent stabilization of Per2. As CO also increases serum EPO levels in human volunteers, these findings continue to support therapeutic use of CO to treat IRI in association with organ transplantation, stroke, and myocardial infarction.
Collapse
|
25
|
Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9759735. [PMID: 29333215 PMCID: PMC5733214 DOI: 10.1155/2017/9759735] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Endothelium is a community of endothelial cells (ECs), which line the blood and lymphatic vessels, thus forming an interface between the tissues and the blood or lympha. This strategic position of endothelium infers its indispensable functional role in controlling vasoregulation, haemostasis, and inflammation. The state of endothelium is simultaneously the cause and effect of many diseases, and this is coupled with modifications of endothelial phenotype represented by markers and with biochemical profile of blood represented by biomarkers. In this paper, we briefly review data on the functional role of endothelium, give definitions of endothelial markers and biomarkers, touch on the methodological approaches for revealing biomarkers, present an implicit role of endothelium in some toxicological mechanistic studies, and survey the role of reactive oxygen species (ROS) in modulation of endothelial status.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Alexander D. Nadeev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- Institute of Cell Biophysics RAS, Pushchino, Russia
| | - Richard O. Jenkins
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | | |
Collapse
|
26
|
Feldbrügge L, Jiang ZG, Csizmadia E, Mitsuhashi S, Tran S, Yee EU, Rothweiler S, Vaid KA, Sévigny J, Schmelzle M, Popov YV, Robson SC. Distinct roles of ecto-nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in liver regeneration and fibrosis. Purinergic Signal 2017; 14:37-46. [PMID: 29134411 DOI: 10.1007/s11302-017-9590-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are cell surface-located transmembrane ecto-enzymes of the CD39 superfamily which regulate inflammation and tissue repair by catalyzing the phosphohydrolysis of extracellular nucleotides and modulating purinergic signaling. In the liver, NTPDase2 is reportedly expressed on portal fibroblasts, but its functional role in regulating tissue regeneration and fibrosis is incompletely understood. Here, we studied the role of NTPDase2 in several models of liver injury using global knockout mice. Liver regeneration and severity of fibrosis were analyzed at different time points after exposure to carbon tetrachloride (CCl4) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or partial hepatectomy in C57BL/6 wild-type and globally NTPDase2-deficient (Entpd2 null) mice. After chronic CCl4 intoxication, Entpd2 null mice exhibit significantly more severe liver fibrosis, as assessed by collagen content and histology. In contrast, deletion of NTPDase2 does not have a substantial effect on biliary-type fibrosis in the setting of DDC feeding. In injured livers, NTPDase2 expression extends from the portal areas to fibrotic septae in pan-lobular (CCl4-induced) liver fibrosis; the same pattern was observed, albeit to a lesser extent in biliary-type (DDC-induced) fibrosis. Liver regeneration after partial hepatectomy is not substantively impaired in global Entpd2 null mice. NTPDase2 protects from liver fibrosis resulting from hepatocellular injury induced by CCl4. In contrast, Entpd2 deletion does not significantly impact fibrosis secondary to DDC injury or liver regeneration after partial hepatectomy. Our observations highlight mechanisms relating to purinergic signaling in the liver and indicate possible therapeutic avenues and new cellular targets to test in the management of hepatic fibrosis.
Collapse
Affiliation(s)
- Linda Feldbrügge
- Department of Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany. .,Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| | - Z Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Eva Csizmadia
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuji Mitsuhashi
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Tran
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric U Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sonja Rothweiler
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kahini A Vaid
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, QC, Québec, G1V 0A6, Canada.,Centre de Recherche du CHU de Québec, Université Laval, QC, Québec, G1V 4G2, Canada
| | - Moritz Schmelzle
- Department of Surgery, Charité Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353, Berlin, Germany
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Simon C Robson
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Meyer J, Balaphas A, Fontana P, Sadoul K, Morel P, Gonelle‐Gispert C, Bühler L. Platelets in liver regeneration. ISBT SCIENCE SERIES 2017; 12:455-462. [DOI: 10.1111/voxs.12382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background and ObjectivesLoss of liver tissue leading to impairment of liver function represents a major cause of mortality. Understanding the mechanism of liver regeneration and developing therapies to sustain liver regeneration are of high therapeutic relevance. In this regard, platelets are considered as potential candidates for stimulating liver regeneration.MethodsWe aim to review the most recent evidence regarding the role of platelets in liver regeneration.ResultsPlatelets stimulate liver regeneration in animal models of liver resection. In humans, platelets are independent predictors of postoperative mortality, liver function and volume recovery. One proposed mechanism by which platelets stimulate liver regeneration relies on their direct effect on hepatocytes. Following partial hepatectomy, platelets accumulate in the residual liver and release their granule content. Platelet‐containing molecules, such as HGF, VEGF, IGF‐1 and serotonin, stimulate hepatocyte proliferation. A putative additional mechanism involves the transfer of platelet mRNA to hepatocytes following platelet internalization. Recent studies have suggested that the effect of platelets relies on their interactions with LSEC. Platelets induce the secretion of IL‐6 from LSEC, a strong initiator of hepatocyte proliferation. Additionally, platelets convey molecules that may impact LSEC function and, by extension, liver regeneration. Platelets potentially interact with Kupffer cells, but the effect of that interaction on liver regeneration remains to be determined.ConclusionPlatelets stimulate liver regeneration. Several mechanisms seem to be involved, acting on the level of hepatocytes, LSEC and potentially Kupffer cells. Identification of the platelet‐molecule(s) involved may lead to targeted therapies for patients with impairment of liver function.
Collapse
Affiliation(s)
- J. Meyer
- Division of Digestive and Transplantation Surgery University Hospitals of Geneva Genève Switzerland
- Unit of Surgical Research University of Geneva Genève Switzerland
| | - A. Balaphas
- Division of Digestive and Transplantation Surgery University Hospitals of Geneva Genève Switzerland
- Unit of Surgical Research University of Geneva Genève Switzerland
| | - P. Fontana
- Division of Angiology and Haemostasis University Hospitals of Geneva Genève Switzerland
- Geneva Platelet Group University of Geneva Genève Switzerland
| | - K. Sadoul
- Regulation and pharmacology of the cytoskeleton Institute for Advanced Biosciences Université Grenoble Alpes Grenoble France
| | - P. Morel
- Division of Digestive and Transplantation Surgery University Hospitals of Geneva Genève Switzerland
- Unit of Surgical Research University of Geneva Genève Switzerland
| | | | - L. Bühler
- Division of Digestive and Transplantation Surgery University Hospitals of Geneva Genève Switzerland
- Unit of Surgical Research University of Geneva Genève Switzerland
| |
Collapse
|
28
|
Fahrner R, Möller A, Press AT, Kortgen A, Kiehntopf M, Rauchfuss F, Settmacher U, Mosig AS. Short-term treatment with taurolidine is associated with liver injury. BMC Pharmacol Toxicol 2017; 18:61. [PMID: 28800748 PMCID: PMC5553585 DOI: 10.1186/s40360-017-0168-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/04/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Taurolidine has been used for peritonitis, oncological and catheter-lock treatment because of its anti-inflammatory properties. It has been suggested that taurolidine has no severe side-effects, but after long-term use morphological and functional changes of the liver were reported. The aim of this study was to investigate the effect of short-term use of taurolidine on the liver. METHODS In HepaRG cell cultures and on a novel liver biochip dose-dependent effects of taurolidine treatment on hepatocyte adherence and cell viability was investigated. Furthermore, liver enzymes and interleukin- (IL-) 6 were measured in supernatants. Male rats were treated with low- or high-dose taurolidine, respectively, and compared to controls with physiological saline solution administration regarding blood serum parameters and histology. RESULTS In HepaRG cell cultures, hepatocyte adherence was significantly decreased, cell death and cleaved caspase-3 were significantly increased after administration of taurolidine in a dose-dependent manner. High-dose application of taurolidine led to elevated liver enzymes and IL-6 secretion in hepatic organoid. After 24 h a significant increase of serum GLDH and ASAT was observed in rats treated with high-dose taurolidine treatment. CONCLUSIONS Our results suggest that taurolidine caused liver injury after short-term use in in vitro and in vivo models probably due to direct toxic effects on hepatocytes. Therefore, the taurolidine dose should be titrated in further investigations regarding liver injury and inflammation.
Collapse
Affiliation(s)
- René Fahrner
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
| | - Anika Möller
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Adrian T. Press
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
- Department of Anesthesiology and Intensive Care Therapy, University Hospital Jena, 07747 Jena, Germany
| | - Andreas Kortgen
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
- Department of Anesthesiology and Intensive Care Therapy, University Hospital Jena, 07747 Jena, Germany
| | - Michael Kiehntopf
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
- Department of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, 07747 Jena, Germany
| | - Falk Rauchfuss
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Alexander S. Mosig
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
29
|
Miao R, Wu Y, Zhang H, Zhou H, Sun X, Csizmadia E, He L, Zhao Y, Jiang C, Miksad RA, Ghaziani T, Robson SC, Zhao H. Utility of the dual-specificity protein kinase TTK as a therapeutic target for intrahepatic spread of liver cancer. Sci Rep 2016; 6:33121. [PMID: 27618777 PMCID: PMC5020615 DOI: 10.1038/srep33121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
Therapies for primary liver cancer, the third leading cause of cancer-related death worldwide, remain limited. Following multi-omics analysis (including whole genome and transcriptome sequencing), we were able to identify the dual-specific protein kinase TTK as a putative new prognostic biomarker for liver cancer. Herein, we show that levels of TTK protein are significantly elevated in neoplastic tissues from a cohort of liver cancer patients, when compared with adjacent hepatic tissues. We also tested the utility of TTK targeted inhibition and have demonstrated therapeutic potential in an experimental model of liver cancer in vivo. Following lentiviral shRNA knockdown in several human liver cancer cell lines, we demonstrated that TTK boosts cell growth and promotes cell spreading; as well as protects against senescence and decreases autophagy. In an experimental animal model, we show that in vitro knockdown of TTK effectively blocks intrahepatic growth of human HCC xenografts. Furthermore, we note that, in vivo silencing of TTK, by systemically delivering TTK siRNAs to already tumor-bearing liver, limits intrahepatic spread of liver cancer cells. This intervention is associated with decreased tumor aggressiveness, as well as increased senescence and autophagy. Taken together, our data suggest that targeted TTK inhibition might have clinical utility as an adjunct therapy in management of liver cancer.
Collapse
Affiliation(s)
- Ruoyu Miao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Wu
- Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Haohai Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huandi Zhou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xiaofeng Sun
- Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Eva Csizmadia
- Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Lian He
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi Zhao
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Beijing 100190, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Rebecca A Miksad
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tahereh Ghaziani
- Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Simon C Robson
- Liver Center and The Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
30
|
Besnard A, Gautherot J, Julien B, Tebbi A, Garcin I, Doignon I, Péan N, Gonzales E, Cassio D, Grosse B, Liu B, Safya H, Cauchois F, Humbert L, Rainteau D, Tordjmann T. The P2X4 purinergic receptor impacts liver regeneration after partial hepatectomy in mice through the regulation of biliary homeostasis. Hepatology 2016; 64:941-53. [PMID: 27301647 DOI: 10.1002/hep.28675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/25/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Many regulatory pathways are involved in liver regeneration after partial hepatectomy (PH), to initiate growth, protect liver cells, and sustain remnant liver functions. Extracellular adenosine triphosphate rises in blood and bile after PH and contributes to liver regeneration, although purinergic receptors and mechanisms remain to be precisely explored. In this work we analyzed during regeneration after PH the involvement of P2X4 purinergic receptors, highly expressed in the liver. P2X4 receptor expression in the liver, liver histology, hepatocyte proliferation, plasma bile acid concentration, bile flow and composition, and lysosome distribution in hepatocytes were studied in wild-type and P2X4 knockout (KO) mice, before and after PH. P2X4 receptors were expressed in hepatocytes and Kupffer cells; in hepatocytes, P2X4 was concentrated in subcanalicular areas closely costained with lysosomal markers. After PH, delayed regeneration, hepatocyte necrosis, and cholestasis were observed in P2X4-KO mice. In P2X4-KO mice, post-PH biliary adaptation was impaired with a smaller increase in bile flow and HCO3 (-) biliary output, as well as altered biliary composition with reduced adenosine triphosphate and lysosomal enzyme release. In line with these data, lysosome distribution and biogenesis were altered in P2X4-KO compared with wild-type mice. CONCLUSION During liver regeneration after PH, P2X4 contributes to the complex control of biliary homeostasis through mechanisms involving pericanalicular lysosomes, with a resulting impact on hepatocyte protection and proliferation. (Hepatology 2016;64:941-953).
Collapse
Affiliation(s)
- Aurore Besnard
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France.,UPMC, Université Paris 06, Paris, France
| | - Julien Gautherot
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Boris Julien
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Ali Tebbi
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Isabelle Garcin
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Isabelle Doignon
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Noémie Péan
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Emmanuel Gonzales
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France.,Hépatologie pédiatrique, Hôpital du Kremlin Bicêtre, Le Kremlin Bicêtre, France
| | - Doris Cassio
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Brigitte Grosse
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Bingkaï Liu
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Hanaa Safya
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Florent Cauchois
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| | - Lydie Humbert
- UPMC, Université Paris 06, Paris, France.,ERL INSERM U 1057, Faculté de Médecine Pierre et Marie Curie, Paris, France
| | - Dominique Rainteau
- UPMC, Université Paris 06, Paris, France.,ERL INSERM U 1057, Faculté de Médecine Pierre et Marie Curie, Paris, France
| | - Thierry Tordjmann
- INSERM U1174, Université Paris Sud, Orsay, France.,Université Paris Sud, Orsay, France
| |
Collapse
|
31
|
Abstract
OBJECTIVES Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. STUDY SELECTION Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. CONCLUSIONS In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.
Collapse
|
32
|
Kudira R, Malinka T, Kohler A, Dosch M, de Agüero MG, Melin N, Haegele S, Starlinger P, Maharjan N, Saxena S, Keogh A, Stroka D, Candinas D, Beldi G. P2X1-regulated IL-22 secretion by innate lymphoid cells is required for efficient liver regeneration. Hepatology 2016; 63:2004-17. [PMID: 26853442 DOI: 10.1002/hep.28492] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/31/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED Paracrine signalling mediated by cytokine secretion is essential for liver regeneration after hepatic resection, yet the mechanisms of cellular crosstalk between immune and parenchymal cells are still elusive. Interleukin-22 (IL-22) is released by immune cells and mediates strong hepatoprotective functions. However, it remains unclear whether IL-22 is critical for the crosstalk between liver lymphocytes and parenchymal cells during liver regeneration after partial hepatectomy (PH). Here, we found that plasma levels of IL-22 and its upstream cytokine, IL-23, are highly elevated in patients after major liver resection. In a mouse model of PH, deletion of IL-22 was associated with significantly delayed hepatocellular proliferation and an increase of hepatocellular injury and endoplasmic reticulum stress. Using Rag1(-/-) and Rag2(-/-) γc(-/) (-) mice, we show that the main producers of IL-22 post-PH are conventional natural killer cells and innate lymphoid cells type 1. Extracellular adenosine triphosphate (ATP), a potent danger molecule, is elevated in patients immediately after major liver resection. Antagonism of the P2-type nucleotide receptors, P2X1 and P2Y6, significantly decreased IL-22 secretion ex vivo. In vivo, specific inhibition of P2X1 was associated with decreased IL-22 secretion, elevated liver injury, and impaired liver regeneration. CONCLUSION This study shows that innate immune cell-derived IL-22 is required for efficient liver regeneration and that secretion of IL-22 in the regenerating liver is modulated by the ATP receptor, P2X1. (Hepatology 2016;63:2004-2017).
Collapse
Affiliation(s)
- Ramesh Kudira
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Malinka
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Kohler
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michel Dosch
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mercedes Gomez de Agüero
- Department of Gastroenterology/Mucosal Immunology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Melin
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefanie Haegele
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Niran Maharjan
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Adrian Keogh
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Candinas
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Hepatic and seric levels of purines in rats experimentally infected by Fasciola hepatica. Parasitol Res 2016; 115:2363-9. [PMID: 26971323 DOI: 10.1007/s00436-016-4986-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/04/2016] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate hepatic and seric levels of purines, as well as their breakdown products in rats infected by Fasciola hepatica on days 15 and 87 post-infection (PI). Rats were divided into two groups: uninfected (n = 10) and infected (n = 20). On day 15 (n = 5 for uninfected group and n = 10 for infected group) and 87 PI (n = 5 for uninfected group and n = 10 for infected group), animals were euthanized for sampling to evaluate levels of purines by high-performance liquid chromatography. In serum, ATP increased (P < 0.05) and ADP decreased (P < 0.05) on days 15 and 87 PI, while AMP increased (P < 0.05) only on day 15 PI. Hypoxanthine levels increased (P < 0.05) on days 15 and 87 PI, while adenosine and xanthine levels decreased and increased (P < 0.05), respectively, on day 87 PI. No difference was observed regarding seric inosine and uric acid (P > 0.05). Hepatic ATP, adenosine, and uric acid levels decreased (P < 0.05) on days 15 and 87 PI. AMP levels decreased (P < 0.05) on day 87 PI, while xanthine levels increased (P < 0.05) on day 15 PI in the liver. Also in the liver, hypoxanthine levels increased (P < 0.05) on day 15 PI and decreased (P < 0.05) on day 87 PI. On the other hand, there was no difference on hepatic ADP and inosine levels (P > 0.05). Therefore, it is possible to conclude that F. hepatica infection can change purine levels, which may be associated with an inflammatory process, and these alterations may influence fasciolosis pathogenesis.
Collapse
|
34
|
Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3928714. [PMID: 26881024 PMCID: PMC4736365 DOI: 10.1155/2016/3928714] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
Oxidative stress results from a disturbed balance between oxidation and antioxidant systems. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) may be either harmful or beneficial to the cells. Ion channels are transmembrane proteins that participate in a large variety of cellular functions and have been implicated in the development of a variety of diseases. A significant amount of the available drugs in the market targets ion channels. These proteins have sulfhydryl groups of cysteine and methionine residues in their structure that can be targeted by ROS and RNS altering channel function including gating and conducting properties, as well as the corresponding signaling pathways associated. The regulation of ion channels by ROS has been suggested to be associated with some pathological conditions including liver diseases. This review focuses on understanding the role and the potential association of ion channels and oxidative stress in liver diseases including fibrosis, alcoholic liver disease, and cancer. The potential association between ion channels and oxidative stress conditions could be used to develop new treatments for major liver diseases.
Collapse
|
35
|
Meyer J, Lejmi E, Fontana P, Morel P, Gonelle-Gispert C, Bühler L. A focus on the role of platelets in liver regeneration: Do platelet-endothelial cell interactions initiate the regenerative process? J Hepatol 2015; 63:1263-1271. [PMID: 26169159 DOI: 10.1016/j.jhep.2015.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/05/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022]
Abstract
Platelets are involved in the early phases of liver regeneration. Moreover, platelet transfusion and thrombocytosis were recently shown to enhance hepatocyte proliferation. However, the precise mechanisms remain elusive. This review discusses the latest updates regarding the mechanisms by which platelets stimulate liver regeneration, focusing on their interactions with liver sinusoidal endothelial cells and on their fate within the liver. Following liver injury, platelets are recruited to and trapped within the liver, where they adhere to the endothelium. Subsequent platelet activation results in the release of platelet granules, which stimulate hepatocyte proliferation through activation of the Akt and ERK1/2 signalling pathways. Platelets activate liver sinusoidal endothelial cells, leading to the secretion of growth factors, such as interleukin-6. Finally, liver sinusoidal cells and hepatocytes can also internalize platelets, but the effects of this alternate process on liver regeneration remain to be explored. A better understanding of the mechanisms by which platelets stimulate liver regeneration could lead to improvement in post-operative organ function and allow hepatectomies of a greater extent to be performed.
Collapse
Affiliation(s)
- Jeremy Meyer
- Division of Visceral and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland; Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland.
| | - Esma Lejmi
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland
| | - Pierre Fontana
- Division of Angiology and Haemostasis, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland; Geneva Platelet Group, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland
| | - Philippe Morel
- Division of Visceral and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland; Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland
| | - Carmen Gonelle-Gispert
- Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland
| | - Léo Bühler
- Division of Visceral and Transplantation Surgery, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Genève 14, Switzerland; Unit of Surgical Research, University of Geneva, Rue Michel-Servet 1, 1206 Genève, Switzerland
| |
Collapse
|
36
|
Tackett BC, Sun H, Mei Y, Maynard JP, Cheruvu S, Mani A, Hernandez-Garcia A, Vigneswaran N, Karpen SJ, Thevananther S. P2Y2 purinergic receptor activation is essential for efficient hepatocyte proliferation in response to partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1073-87. [PMID: 25301185 PMCID: PMC4254960 DOI: 10.1152/ajpgi.00092.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/30/2014] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides via activation of P2 purinergic receptors influence hepatocyte proliferation and liver regeneration in response to 70% partial hepatectomy (PH). Adult hepatocytes express multiple P2Y (G protein-coupled) and P2X (ligand-gated ion channels) purinergic receptor subtypes. However, the identity of key receptor subtype(s) important for efficient hepatocyte proliferation in regenerating livers remains unknown. To evaluate the impact of P2Y2 purinergic receptor-mediated signaling on hepatocyte proliferation in regenerating livers, wild-type (WT) and P2Y2 purinergic receptor knockout (P2Y2-/-) mice were subjected to 70% PH. Liver tissues were analyzed for activation of early events critical for hepatocyte priming and subsequent cell cycle progression. Our findings suggest that early activation of p42/44 ERK MAPK (5 min), early growth response-1 (Egr-1) and activator protein-1 (AP-1) DNA-binding activity (30 min), and subsequent hepatocyte proliferation (24-72 h) in response to 70% PH were impaired in P2Y2-/- mice. Interestingly, early induction of cytokines (TNF-α, IL-6) and cytokine-mediated signaling (NF-κB, STAT-3) were intact in P2Y2-/- remnant livers, uncovering the importance of cytokine-independent and nucleotide-dependent early priming events critical for subsequent hepatocyte proliferation in regenerating livers. Hepatocytes isolated from the WT and P2Y2-/- mice were treated with ATP or ATPγS for 5-120 min and 12-24 h. Extracellular ATP alone, via activation of P2Y2 purinergic receptors, was sufficient to induce ERK phosphorylation, Egr-1 protein expression, and key cyclins and cell cycle progression of hepatocytes in vitro. Collectively, these findings highlight the functional significance of P2Y2 purinergic receptor activation for efficient hepatocyte priming and proliferation in response to PH.
Collapse
Affiliation(s)
- Bryan C Tackett
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Hongdan Sun
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Yu Mei
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Janielle P Maynard
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Sayuri Cheruvu
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Arunmani Mani
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | | | - Nadarajah Vigneswaran
- Department of Diagnostic Sciences, University of Texas Dental Branch in Houston, Houston, Texas
| | - Saul J Karpen
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Sundararajah Thevananther
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
37
|
Ishimaru M, Yusuke N, Tsukimoto M, Harada H, Takenouchi T, Kitani H, Kojima S. Purinergic signaling via P2Y receptors up-mediates IL-6 production by liver macrophages/Kupffer cells. J Toxicol Sci 2014; 39:413-23. [PMID: 24849676 DOI: 10.2131/jts.39.413] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Resident macrophages in the liver (Kupffer cells) produce various cytokines and chemokines, and have important roles in hepatitis and liver fibrosis. The cells are activated by various factors, for example lipopolysaccharide (LPS), which is an endotoxin and is high in the blood of patients with liver cirrhosis. Involvement of P2 receptors in the release of pro-inflammatory cytokines from Kupffer cells is little. In this study, we investigated purinergic signaling in the release of pro-inflammatory cytokines, such as IL-6 and TNF-α, from liver Kupffer cells of C57BL/6 mice (KUP5 cells). KUP5cells were isolated from C57BL/6 mice and cultivated with Dulbecco's modified Eagle's medium. The cells were stimulated with LPS. LPS-induced IL-6 production by KUP5 cells was suppressed significantly by pretreatments with non-selective P2 antagonist suramin, P2Y13antagonist MRS2211, and ecto-nucleotidase, whereas P2Y receptor agonists, significantly increased the IL-6 production. P2Y13knockdown reduced LPS-induced IL-6 production, but by less than 50%. These results would suggest that P2Y receptors including P2Y13and others, may involves in LPS-induced IL-6 production in Kupffer cells, leading to the liver inflammation. Therefore, we first showed the importance of purinergic signaling via P2Y receptors in the activation of Kupffer cells and liver injury, which is worthwhile in drug development for liver diseases.
Collapse
Affiliation(s)
- Makiko Ishimaru
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS)
| | | | | | | | | | | | | |
Collapse
|
38
|
Expression of mediators of purinergic signaling in human liver cell lines. Purinergic Signal 2014; 10:631-8. [PMID: 25194703 DOI: 10.1007/s11302-014-9425-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022] Open
Abstract
Purinergic signaling regulates a diverse and biologically relevant group of processes in the liver. However, progress of research into functions regulated by purinergic signals in the liver has been hampered by the complexity of systems probed. Specifically, there are multiple liver cell subpopulations relevant to hepatic functions, and many of these have been effectively modeled in human cell lines. Furthermore, there are more than 20 genes relevant to purinergic signaling, each of which has distinct functions. Hence, we felt the need to categorize genes relevant to purinergic signaling in the best characterized human cell line models of liver cell subpopulations. Therefore, we investigated the expression of adenosine receptor, P2X receptor, P2Y receptor, and ecto-nucleotidase genes via RT-PCR in the following cell lines: LX-2, hTERT, FH11, HepG2, Huh7, H69, and MzChA-1. We believe that our findings will provide an excellent resource to investigators seeking to define functions of purinergic signals in liver physiology and liver disease pathogenesis.
Collapse
|
39
|
Burnstock G, Vaughn B, Robson SC. Purinergic signalling in the liver in health and disease. Purinergic Signal 2014; 10:51-70. [PMID: 24271096 PMCID: PMC3944046 DOI: 10.1007/s11302-013-9398-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
Purinergic signalling is involved in both the physiology and pathophysiology of the liver. Hepatocytes, Kupffer cells, vascular endothelial cells and smooth muscle cells, stellate cells and cholangiocytes all express purinoceptor subtypes activated by adenosine, adenosine 5'-triphosphate, adenosine diphosphate, uridine 5'-triphosphate or UDP. Purinoceptors mediate bile secretion, glycogen and lipid metabolism and indirectly release of insulin. Mechanical stress results in release of ATP from hepatocytes and Kupffer cells and ATP is also released as a cotransmitter with noradrenaline from sympathetic nerves supplying the liver. Ecto-nucleotidases play important roles in the signalling process. Changes in purinergic signalling occur in vascular injury, inflammation, insulin resistance, hepatic fibrosis, cirrhosis, diabetes, hepatitis, liver regeneration following injury or transplantation and cancer. Purinergic therapeutic strategies for the treatment of these pathologies are being explored.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
40
|
Roberts V, Stagg J, Dwyer KM. The Role of Ectonucleotidases CD39 and CD73 and Adenosine Signaling in Solid Organ Transplantation. Front Immunol 2014; 5:64. [PMID: 24600452 PMCID: PMC3927137 DOI: 10.3389/fimmu.2014.00064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/03/2014] [Indexed: 12/20/2022] Open
Abstract
Extracellular adenosine is a potent immunomodulatory molecule that accumulates in states of inflammation. Nucleotides such as adenosine triphosphate and adenosine diphosphate are release from injured and necrotic cells and hydrolyzed to adenosine monophosphate and adenosine by the concerted action of the ectonucleotidases CD39 and CD73. Accumulating evidence suggest that purinergic signaling is involved in the inflammatory response that accompanies acute rejection and chronic allograft dysfunction. Modification of the purinergic pathway has been shown to alter graft survival in a number of solid organ transplant models and the response to ischemia–reperfusion injury (IRI). Furthermore, the purinergic pathway is intrinsically involved in B and T cell biology and function. Although T cells have traditionally been considered the orchestrators of acute allograft rejection, a role for B cells in chronic allograft loss is being increasingly appreciated. This review focuses on the role of the ectonucleotidases CD39 and CD73 and adenosine signaling in solid organ transplantation including the effects on IRI and T and B cell biology.
Collapse
Affiliation(s)
- Veena Roberts
- Immunology Research Centre, St. Vincent's Hospital Melbourne and Department of Medicine, The University of Melbourne , Melbourne, VIC , Australia
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Faculté de Pharmacie et Institut du Cancer de Montréal , Montréal, QC , Canada
| | - Karen M Dwyer
- Immunology Research Centre, St. Vincent's Hospital Melbourne and Department of Medicine, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
41
|
Lehwald N, Duhme C, Wildner M, Kuhn S, Fürst G, Forbes SJ, Jonas S, Robson SC, Knoefel WT, Schmelzle M, Schulte Am Esch J. HGF and SDF-1-mediated mobilization of CD133+ BMSC for hepatic regeneration following extensive liver resection. Liver Int 2014; 34:89-101. [PMID: 23701640 DOI: 10.1111/liv.12195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/04/2013] [Indexed: 02/13/2023]
Abstract
BACKGROUND The molecular mechanisms of haematopoietic stem cells (HSC) mobilization and homing to the liver after partial hepatectomy (PH) remain largely unexplored. METHODS Functional liver volume loss and regain was determined by computerized tomography (CT) volumetry in 30 patients following PH. Peripheral HSC mobilization was investigated by fluorescence-activated cell sorting (FACS) analyses and cytokine enzyme-linked immunosorbent assay assays. Migration of purified HSC towards hepatic growth factor (HGF) and stroma-derived factor-1 (SDF-1) gradients was tested in vitro. Mice after 70% PH were examined for HSC mobilization by FACS and cytokine mRNA expression in the liver. FACS-sorted HSC were administered after PH and hepatocyte proliferation was evaluated by immunohistochemical staining for Ki67. RESULTS Impaired liver function was noted after extended hepatic resection when compared to smaller resections. Patients with large liver resections were characterized by significantly higher levels of peripheral HSC which were positively correlated with the extent of resected liver volume and its regain after 3 weeks. Increased plasma levels of HGF, SDF-1 and insulin like growth factor (IGF-1) were evident within the first 6 hours post resection. Migration assays of human HSC in vitro showed a specific target-demonstrated migration towards recombinant HGF and SDF-1 gradients in a concentration and specific receptor (c-Met and CXCR4) dependent manner. The evaluation of peripheral human alpha foetoprotein expression demonstrated pronounced stemness following increased CD133(+) HSC in the course of liver regeneration following PH. Our human data were further validated in a murine model of PH and furthermore demonstrated increased hepatocyte proliferation subsequent to CD133(+) HSC treatment. CONCLUSION HGF and SDF-1 are required for effective HSC mobilization and homing to the liver after hepatic resection. These findings have significant implications for potential therapeutic strategies targeting chemotactant modulation and stem cell mobilization for liver protection and regeneration.
Collapse
Affiliation(s)
- Nadja Lehwald
- Department of Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Adenosine triphosphate (ATP) is essential for the myriad of metabolic processes upon which life is based and is known widely as the universal energy currency unit of intracellular biologic reactions. ATP, adenosine diphosphate, adenosine, as well as other purines and pyrimidines also serve as ubiquitous extracellular mediators which function through the activation of specific receptors (viz. P2 receptors for nucleotides and purinergic P1 receptors for adenosine). Extracellular nucleotides are rapidly converted to nucleosides, such as adenosine, by highly regulated plasma membrane ectonucleotidases that modulate many of the normal biological and metabolic processes in the liver - such as gluconeogenesis and insulin signaling. Under inflammatory conditions, as with ischemia reperfusion, sepsis or metabolic stress, ATP and other nucleotides can also act as 'damage-associated molecular patterns' causing inflammasome activation in innate immune cells and endothelium resulting in tissue damage. The phosphohydrolysis of ATP by ectonucleotidases, such as those of the CD39/ENTPD family, results in the generation of immune suppressive adenosine, which in turn markedly limits inflammatory processes. Experimental studies by others and our group have implicated purinergic signaling in experimental models of hepatic ischemia reperfusion and inflammation, transplant rejection, hepatic regeneration, steatohepatitis, fibrosis and cancer, amongst others. Expression of ectonucleotidases on sinusoidal endothelial, stellate or immune cells allows for homeostatic integration and linking of the control of vascular inflammatory and immune cell reactions in the liver. CD39 expression also identifies hepatic myeloid dendritic cells and efficiently distinguishes T-regulatory-type cells from other resting or activated T cells. Our evolving data strongly indicate that CD39 serves as a key 'molecular switch' and is an integral component of the suppressive machinery of myeloid, dendritic and T cells. Increased understanding of mechanisms of extracellular ATP scavenging and specifically conversion to nucleosides by ectonucleotidases of the CD39 family have also led to novel insights into the exquisite balance of nucleotide P2-receptor and adenosinergic P1-receptor signaling in inflammatory and hepatic diseases. Further, CD39 and other ectonucleotidases exhibit genetic polymorphisms in humans which alter levels of expression/function and are associated with predisposition to inflammatory and immune diseases, diabetes and vascular calcification, amongst other problems. Development of therapeutic strategies targeting purinergic signaling and ectonucleotidases offers promise for the management of disordered inflammation and aberrant immune reactivity.
Collapse
Affiliation(s)
- Byron P Vaughn
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
43
|
Seo J, Osorio JS, Schmitt E, Corrêa MN, Bertoni G, Trevisi E, Loor JJ. Hepatic purinergic signaling gene network expression and its relationship with inflammation and oxidative stress biomarkers in blood from peripartal dairy cattle. J Dairy Sci 2013; 97:861-73. [PMID: 24359819 DOI: 10.3168/jds.2013-7379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023]
Abstract
The liver plays a central role in allowing dairy cattle to make a successful transition into lactation. In liver, as in other tissues, extracellular nucleotides and nucleosides trigger cellular responses through adenosine and ATP receptors. Adenosine triphosphate and certain nucleotides serve as signals that can heighten purinergic receptor activation in several pathologic processes. We evaluated the mRNA expression of genes associated with the purinergic signaling network in liver tissue during the peripartal period. Seven multiparous Holstein cows were dried off at d -50 relative to expected parturition and fed a controlled-energy diet (net energy for lactation=1.24 Mcal/kg of DM) for ad libitum intake during the entire dry period. After calving, all cows were fed a common lactation diet (net energy for lactation=1.65 Mcal/kg of DM) until 30 DIM. Biopsies of liver were harvested at d -10, 7, and 21 for mRNA expression of 9 purinergic receptors, 7 ATP and adenosine transport channels, and 10 enzymes associated with ATP hydrolysis. Blood collected at d -21, -10, 7, 14, and 21 was used to measure concentrations of inflammation and oxidative stress biomarkers. The expression of type 1 purinergic receptors (ADORA2A and ADORA3), several nucleoside hydrolases [ectonucleoside triphosphate diphosphohydrolase 7 (ENTPD7), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), ENPP3, and adenosine deaminase (ADA)], and a type 2 purinergic receptor (P2RX7) was downregulated after calving. In contrast, the expression of type 2 purinergic receptors (P2RX4 and PR2Y11), an ATP release channel (gap junction hemichannel GJB1), and an adenosine uptake protein (SLC29A1) followed the opposite response, increasing after calving and remaining elevated through 21 d. Haptoglobin, ceruloplasmin, and reactive oxygen metabolite concentrations increased gradually from d -21 d through at least d 7. The opposite response was observed for albumin, paraoxonase, α-tocopherol, and nitric oxide, which decreased gradually to a nadir at 7 and 14 d. Our results suggest that alterations after calving of the expression of hepatic purinergic signaling genes could be functionally important because in nonruminants, they play roles in bile formation, glucose metabolism, cholesterol uptake, inflammation, and steatosis. The correlation analysis provided evidence of a link between purinergic signaling genes and biomarkers of inflammation and oxidative stress.
Collapse
Affiliation(s)
- J Seo
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Daehak-dong, Kwanak-gu, Seoul 151-742, Republic of Korea; Mammalian NutriPhysioGenomics, Department of Animal Sciences, and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana 61801
| | - J S Osorio
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana 61801
| | - E Schmitt
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Rondônia, BR 364, Km 5.5, Zona Rural, Caixa Postal 127, CEP 76815-800, Porto Velho, Rondônia, Brazil
| | - M N Corrêa
- Universidade Federal de Pelotas, NUPEEC, Departamento Clínicas Veterinária, Campus Universitário, 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - G Bertoni
- Istituto di Zootecnica, Facoltà di Agraria, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Istituto di Zootecnica, Facoltà di Agraria, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana 61801.
| |
Collapse
|
44
|
Zimmerman MA, Kam I, Eltzschig H, Grenz A. Biological implications of extracellular adenosine in hepatic ischemia and reperfusion injury. Am J Transplant 2013; 13:2524-9. [PMID: 23924168 PMCID: PMC3805691 DOI: 10.1111/ajt.12398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/25/2023]
Abstract
The purine nucleoside adenosine is clinically employed in the treatment of supraventricular tachycardia. In addition, it has direct coronary vasodilatory effects, and may influence platelet aggregation. Experimental observations mechanistically link extracellular adenosine to cellular adaptation to hypoxia. Adenosine generation has been implicated in several pathophysiologic processes including angiogenesis, tumor defenses and neurodegeneration. In solid organ transplantation, prolonged tissue ischemia and subsequent reperfusion injury may lead to profound graft dysfunction. Importantly, conditions of limited oxygen availability are associated with increased production of extracellular adenosine and subsequent tissue protection. Within the rapidly expanding field of adenosine biology, several enzymatic steps in adenosine production have been characterized and multiple receptor subtypes have been identified. In this review, we briefly examine the biologic steps involved in adenosine generation and chronicle the current state of adenosine signaling in hepatic ischemia and reperfusion injury.
Collapse
Affiliation(s)
- M A Zimmerman
- Division of Transplant Surgery, and the Mucosal Inflammation Program, University of Colorado, Denver, CO
| | | | | | | |
Collapse
|
45
|
Nowak-Machen M, Schmelzle M, Hanidziar D, Junger W, Exley M, Otterbein L, Wu Y, Csizmadia E, Doherty G, Sitkovsky M, Robson SC. Pulmonary natural killer T cells play an essential role in mediating hyperoxic acute lung injury. Am J Respir Cell Mol Biol 2013; 48:601-9. [PMID: 23349052 DOI: 10.1165/rcmb.2012-0180oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Critically ill patients are routinely exposed to high concentrations of supplemental oxygen for prolonged periods of time, which can be life-saving in the short term, but such exposure also causes severe lung injury and increases mortality. To address this therapeutic dilemma, we studied the mechanisms of the tissue-damaging effects of oxygen in mice. We show that pulmonary invariant natural killer T (iNKT) cells are unexpectedly crucial in the development of acute oxygen-induced lung injury. iNKT cells express high concentrations of the ectonucleotidase CD39, which regulates their state of activation. Both iNKT cell-deficient (Jα18(-/-)) and CD39-null mice tolerate hyperoxia, compared with wild-type control mice that exhibit severe lung injury. An adoptive transfer of wild-type iNKT cells into Jα18(-/-) mice results in hyperoxic lung injury, whereas the transfer of CD39-null iNKT cells does not. Pulmonary iNKT cell activation and proliferation are modulated by ATP-dependent purinergic signaling responses. Hyperoxic lung injury can be induced by selective P2X7-receptor blockade in CD39-null mice. Our data indicate that iNKT cells are involved in the pathogenesis of hyperoxic lung injury, and that tissue protection can be mediated through ATP-induced P2X7 receptor signaling, resulting in iNKT cell death. In conclusion, our data suggest that iNKT cells and purinergic signaling should be evaluated as potential novel therapeutic targets to prevent hyperoxic lung injury.
Collapse
Affiliation(s)
- Martina Nowak-Machen
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Graubardt N, Fahrner R, Trochsler M, Keogh A, Breu K, Furer C, Stroka D, Robson SC, Slack E, Candinas D, Beldi G. Promotion of liver regeneration by natural killer cells in a murine model is dependent on extracellular adenosine triphosphate phosphohydrolysis. Hepatology 2013; 57:1969-79. [PMID: 22898900 DOI: 10.1002/hep.26008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/24/2012] [Indexed: 12/30/2022]
Abstract
UNLABELLED Nucleotides, such as adenosine triphosphate (ATP), are released by cellular injury, bind to purinergic receptors expressed on hepatic parenchymal and nonparenchymal cells, and modulate cellular crosstalk. Liver resection and resulting cellular stress initiate such purinergic signaling responses between hepatocytes and innate immune cells, which regulate and ultimately drive liver regeneration. We studied a murine model of partial hepatectomy using immunodeficient mice to determine the effects of natural killer (NK) cell-mediated purinergic signaling on liver regeneration. We noted first that liver NK cells undergo phenotypic changes post-partial hepatectomy (PH) in vivo, including increased cytotoxicity and more immature phenotype manifested by alterations in the expression of CD107a, CD27, CD11b, and CD16. Hepatocellular proliferation is significantly decreased in Rag2/common gamma-null mice (lacking T, B, and NK cells) when compared to wildtype and Rag1-null mice (lacking T and B cells but retaining NK cells). Extracellular ATP levels are elevated post-PH and NK cell cytotoxicity is substantively increased in vivo in response to hydrolysis of extracellular ATP levels by apyrase (soluble NTPDase). Moreover, liver regeneration is significantly increased by the scavenging of extracellular ATP in wildtype mice and in Rag2/common gamma-null mice after adoptive transfer of NK cells. Blockade of NKG2D-dependent interactions significantly decreased hepatocellular proliferation. In vitro, NK cell cytotoxicity is inhibited by extracellular ATP in a manner dependent on P2Y1, P2Y2, and P2X3 receptor activation. CONCLUSION We propose that hepatic NK cells are activated and cytotoxic post-PH and support hepatocellular proliferation. NK cell cytotoxicity is, however, attenuated by hepatic release of extracellular ATP by way of the activation of specific P2 receptors. Clearance of extracellular ATP elevates NK cell cytotoxicity and boosts liver regeneration.
Collapse
Affiliation(s)
- Nadine Graubardt
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Besnard A, Julien B, Gonzales E, Tordjmann T. Innate immunity, purinergic system, and liver regeneration: a trip in complexity. Hepatology 2013; 57:1688-90. [PMID: 23390033 DOI: 10.1002/hep.26312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2013] [Indexed: 12/22/2022]
|
48
|
Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury. Transplantation 2013; 95:63-9. [PMID: 23232366 DOI: 10.1097/tp.0b013e318278d3cd] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND We have previously demonstrated that CD133 and CD39 are expressed by hematopoietic stem cells (HSC), which are mobilized after liver injury and target sites of injury, limit vascular inflammation, and boost hepatic regeneration. Plasma microparticles (MP) expressing CD39 can block endothelial activation. Here, we tested whether CD133 MP might be shed in a CD39-dependent manner in a model of liver injury and could potentially serve as biomarkers of liver failure in the clinic. METHODS Wild-type and Cd39-null mice were subjected to acetaminophen-induced liver injury. Mice were sacrificed and plasma MP were isolated by ultracentrifugation. HSC and CD133 MP levels were analyzed by fluorescence-activated cell sorting. Patients were enrolled with acute (n=5) and acute on chronic (n=5) liver injury with matched controls (n=7). Blood was collected at admission and plasma CD133 and CD39 MP subsets were analyzed by fluorescence-activated cell sorting. RESULTS HSC and CD133 MP levels were significantly increased only in the plasma of wild-type mice with acetaminophen hepatotoxicity (P<0.05). No increases in CD133 MP were noted in Cd39-null mice. Plasma MP increases were observed in patients with liver injury. These MP were characterized by significantly higher levels of CD39 (P<0.05). CONCLUSIONS HSC and plasma CD133 MP levels increase in a CD39-dependent manner during experimental acute liver injury. Increased levels of CD39 MP are differentially noted in patients with liver injury. Further research is needed to determine whether MP fluxes are secondary to pathophysiologic insults to the liver or might reflect compensatory responses.
Collapse
|
49
|
Schmelzle M, Duhme C, Junger W, Salhanick SD, Chen Y, Wu Y, Toxavidis V, Csizmadia E, Han L, Bian S, Fürst G, Nowak M, Karp SJ, Knoefel WT, Esch JSA, Robson SC. CD39 modulates hematopoietic stem cell recruitment and promotes liver regeneration in mice and humans after partial hepatectomy. Ann Surg 2013; 257:693-701. [PMID: 23474584 PMCID: PMC4243517 DOI: 10.1097/sla.0b013e31826c3ec2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To study molecular mechanisms involved in hematopoietic stem cell (HSC) mobilization after liver resection and determine impacts on liver regeneration. BACKGROUND Extracellular nucleotide-mediated cell signaling has been shown to boost liver regeneration. Ectonucleotidases of the CD39 family are expressed by bone marrow-derived cells, and purinergic mechanisms might also impact mobilization and functions of HSC after liver injury. METHODS Partial hepatectomy was performed in C57BL/6 wild-type, Cd39 ectonucleotidase-null mice and in chimeric mice after transplantation of wild-type or Cd39-null bone marrow. Bone marrow-derived HSCs were purified by fluorescence-activated cell sorting and administered after hepatectomy. Chemotactic studies were performed to examine effects of purinergic receptor agonists and antagonists in vitro. Mobilization of human HSCs and expression of CD39 were examined and linked to the extent of resection and liver tests. RESULTS Subsets of HSCs expressing Cd39 are preferentially mobilized after partial hepatectomy. Chemotactic responses of HSCs are increased by CD39-dependent adenosine triphosphate hydrolysis and adenosine signaling via A2A receptors in vitro. Mobilized Cd39 HSCs boost liver regeneration, potentially limiting interleukin 1β signaling. In clinical studies, mobilized human HSCs also express CD39 at high levels. Mobilization of HSCs correlates directly with the restoration of liver volume and function after partial hepatectomy. CONCLUSIONS We demonstrate CD39 to be a novel HSC marker that defines a functionally distinct stem cell subset in mice and humans. HSCs are mobilized after liver resection, limit inflammation, and boost regeneration in a CD39-dependent manner. These observations have implications for monitoring and indicate future therapeutic avenues.
Collapse
Affiliation(s)
- Moritz Schmelzle
- Department of Medicine, Liver Center and Transplantation Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Constanze Duhme
- Department of Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Steven D. Salhanick
- Department of Medicine, Liver Center and Transplantation Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yu Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yan Wu
- Department of Medicine, Liver Center and Transplantation Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Vasilis Toxavidis
- Flow Cytometry Core Facility, Harvard Stem Cell Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Eva Csizmadia
- Department of Medicine, Liver Center and Transplantation Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lihui Han
- Department of Medicine, Liver Center and Transplantation Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shu Bian
- Department of Medicine, Liver Center and Transplantation Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Günter Fürst
- Department of Radiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Martina Nowak
- Department of Medicine, Liver Center and Transplantation Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Department of Anesthesiology, Peri-operative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Seth J. Karp
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Wolfram T. Knoefel
- Department of Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Simon C. Robson
- Department of Medicine, Liver Center and Transplantation Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
50
|
Sun X, Han L, Seth P, Bian S, Li L, Csizmadia E, Junger WG, Schmelzle M, Usheva A, Tapper EB, Baffy G, Sukhatme VP, Wu Y, Robson SC. Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/ENTPD1 null mice. Hepatology 2013; 57:205-16. [PMID: 22859060 PMCID: PMC3505255 DOI: 10.1002/hep.25989] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/20/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Liver cancer is associated with chronic inflammation, which is linked to immune dysregulation, disordered metabolism, and aberrant cell proliferation. Nucleoside triphosphate diphosphohydrolase-1; (CD39/ENTPD1) is an ectonucleotidase that regulates extracellular nucleotide/nucleoside concentrations by scavenging nucleotides to ultimately generate adenosine. These properties inhibit antitumor immune responses and promote angiogenesis, being permissive for the growth of transplanted tumors. Here we show that Cd39 deletion promotes development of both induced and spontaneous autochthonous liver cancer in mice. Loss of Cd39 results in higher concentrations of extracellular nucleotides, which stimulate proliferation of hepatocytes, abrogate autophagy, and disrupt glycolytic metabolism. Constitutive activation of Ras-mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR)-S6K1 pathways occurs in both quiescent Cd39 null hepatocytes in vitro and liver tissues in vivo. Exogenous adenosine 5'-triphosphate (ATP) boosts these signaling pathways, whereas rapamycin inhibits such aberrant responses in hepatocytes. CONCLUSION Deletion of Cd39 and resulting changes in disordered purinergic signaling perturb hepatocellular metabolic/proliferative responses, paradoxically resulting in malignant transformation. These findings might impact adjunctive therapies for cancer. Our studies indicate that the biology of autochthonous and transplanted tumors is quite distinct.
Collapse
Affiliation(s)
- Xiaofeng Sun
- Department of Medicine, Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Lihui Han
- Department of Medicine, Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pankaj Seth
- Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shu Bian
- Department of Medicine, Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Linglin Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Eva Csizmadia
- Department of Medicine, Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Wolfgang G. Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Moritz Schmelzle
- Department of Medicine, Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Anny Usheva
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Elliot B. Tapper
- Department of Medicine, Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Vikas P. Sukhatme
- Department of Medicine, Division of Interdisciplinary Medicine and Biotechnology Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yan Wu
- Department of Medicine, Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Simon C. Robson
- Department of Medicine, Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|