1
|
Drieu La Rochelle J, Ward J, Stenke E, Yin Y, Matsumoto M, Jennings R, Aviello G, Knaus UG. Dysregulated NOX1-NOS2 activity as hallmark of ileitis in mice. Mucosal Immunol 2024:S1933-0219(24)00093-X. [PMID: 39245144 DOI: 10.1016/j.mucimm.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Inflammation of the ileum, or ileitis, is commonly caused by Crohn's disease (CD) but can also accompany ulcerative colitis (backwash ileitis), infections or drug-related damage. Oxidative tissue injury triggered by reactive oxygen species (ROS) is considered part of the ileitis etiology. However, not only elevated ROS but also permanently decreased ROS are associated with inflammatory bowel disease (IBD). While very early onset IBD (VEO-IBD) is associated with a spectrum of NOX1 variants, how NOX1 inactivation contributes to disease development remains ill-defined. Besides propagating signaling responses, NOX1 provides superoxide for peroxynitrite formation in the epithelial barrier. Here we report that NOX4, an H2O2-generating NADPH oxidase with documented tissue protective effects in the intestine and other tissues, limits the generation of ileal peroxynitrite by NOX1/NOS2. Deletion of NOX4 leads to persistent peroxynitrite excess, hyperpermeability, villus blunting, muscular hypertrophy, chemokine/cytokine upregulation and dysbiosis. Conversely, SAMP1/YitFc mice, a CD-like ileitis model, showed age-dependent NOX1/NOS2 downregulation preventing ileal peroxynitrite formation in homeostasis and LPS-induced acute inflammation. Deficiency in NOX1 correlated with the upregulation of antimicrobial peptides, suggesting that ileal peroxynitrite acts as chemical barrier and microbiota modifier in the ileum.
Collapse
Affiliation(s)
| | - Josie Ward
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Emily Stenke
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Yuting Yin
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Richard Jennings
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Gabriella Aviello
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ulla G Knaus
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Privitera G, Williams JJ, De Salvo C. The Importance of Th2 Immune Responses in Mediating the Progression of Gastritis-Associated Metaplasia to Gastric Cancer. Cancers (Basel) 2024; 16:522. [PMID: 38339273 PMCID: PMC10854712 DOI: 10.3390/cancers16030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer is one of the leading causes of cancer deaths worldwide, with chronic gastritis representing the main predisposing factor initiating the cascade of events leading to metaplasia and eventually progressing to cancer. A widely accepted classification distinguishes between autoimmune and environmental atrophic gastritis, mediated, respectively, by T cells promoting the destruction of the oxyntic mucosa, and chronic H. pylori infection, which has also been identified as the major risk factor for gastric cancer. The original dogma posits Th1 immunity as a main causal factor for developing gastritis and metaplasia. Recently, however, it has become evident that Th2 immune responses play a major role in the events causing chronic inflammation leading to tumorigenesis, and in this context, many different cell types and cytokines are involved. In particular, the activity of cytokines, such as IL-33 and IL-13, and cell types, such as mast cells, M2 macrophages and eosinophils, are intertwined in the process, promoting chronic gastritis-dependent and more diffuse metaplasia. Herein, we provide an overview of the critical events driving the pathology of this disease, focusing on the most recent findings regarding the importance of Th2 immunity in gastritis and gastric metaplasia.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20142 Milan, Italy
| | - Joseph J. Williams
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
| | - Carlo De Salvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (G.P.); (J.J.W.)
| |
Collapse
|
3
|
Pulakazhi Venu VK, Alston L, Iftinca M, Tsai YC, Stephens M, Warriyar K V V, Rehal S, Hudson G, Szczepanski H, von der Weid PY, Altier C, Hirota SA. Nr4A1 modulates inflammation-associated intestinal fibrosis and dampens fibrogenic signaling in myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2021; 321:G280-G297. [PMID: 34288735 DOI: 10.1152/ajpgi.00338.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs), contributing to tissue stiffening and luminal narrowing. Human nuclear receptor 4A 1 (NR4A1) was previously reported to regulate mesenchymal cell function and dampen fibrogenic signaling. NR4A1 gene variants are associated with IBD risk, and it has been shown to regulate intestinal inflammation. Here, we tested the hypothesis that NR4A1 acts as a negative regulator of intestinal fibrosis through regulating myofibroblast function. Using the SAMP1/YitFc mouse, we tested whether two pharmacological agents known to enhance NR4A1 signaling, cytosporone B (Csn-B) or 6-mercaptopurine (6-MP), could reduce fibrosis. We also used the dextran sulfate sodium (DSS) model of colitis and assessed the magnitude of colonic fibrosis in mouse nuclear receptor 4A 1 (Nr4a1-/-) and their wild-type littermates (Nr4a1+/+). Lastly, intestinal myofibroblasts isolated from Nr4a1-/- and Nr4a1+/+ mice or primary human intestinal myofibroblasts were stimulated with transforming growth factor-β1 (TGF-β1), in the presence or absence of Csn-B or 6-MP, and proliferation and ECM gene expression assessed. Csn-B or 6-MP treatment significantly reduced ileal thickness, collagen, and overall ECM content in SAMP1/YitFc mice. This was associated with a reduction in proliferative markers within the mesenchymal compartment. Nr4a1-/- mice exposed to DSS exhibited increased colonic thickening and ECM content. Nr4a1-/- myofibroblasts displayed enhanced TGF-β1-induced proliferation. Furthermore, Csn-B or 6-MP treatment was antiproliferative in Nr4a1+/+ but not Nr4a1-/- cells. Lastly, activating NR4A1 in human myofibroblasts reduced TGF-β1-induced collagen deposition and fibrosis-related gene expression. Our data suggest that NR4A1 can attenuate fibrotic processes in intestinal myofibroblasts and could provide a valuable clinical target to treat inflammation-associated intestinal fibrosis.NEW & NOTEWORTHY Fibrosis and increased muscle thickening contribute to stricture formation and intestinal obstruction, a complication that occurs in 30%-50% of patients with CD within 10 yr of disease onset. More than 50% of those who undergo surgery to remove the obstructed bowel will experience stricture recurrence. To date, there are no drug-based approaches approved to treat intestinal strictures. In the current submission, we identify NR4A1 as a novel target to treat inflammation-associated intestinal fibrosis.
Collapse
Affiliation(s)
- Vivek Krishna Pulakazhi Venu
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Alston
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Cheng Tsai
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Stephens
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Vineetha Warriyar K V
- Faculty of Kinesiology, Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
| | - Sonia Rehal
- Department of Advanced Diagnostics, University Health Network, Toronto, Ontario, Canada
| | - Grace Hudson
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Holly Szczepanski
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Pierre-Yves von der Weid
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Simon A Hirota
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Immunology, Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Disease, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Affiliation(s)
- Carlo De Salvo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
5
|
De Salvo C, Pastorelli L, Petersen CP, Buttò LF, Buela KA, Omenetti S, Locovei SA, Ray S, Friedman HR, Duijser J, Xin W, Osme A, Cominelli F, Mahabeleshwar GH, Mills JC, Goldenring JR, Pizarro TT. Interleukin 33 Triggers Early Eosinophil-Dependent Events Leading to Metaplasia in a Chronic Model of Gastritis-Prone Mice. Gastroenterology 2021; 160:302-316.e7. [PMID: 33010253 PMCID: PMC7755675 DOI: 10.1053/j.gastro.2020.09.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Interleukin (IL)33/IL1F11 is an important mediator for the development of type 2 T-helper cell (Th2)-driven inflammatory disorders and has also been implicated in the pathogenesis of gastrointestinal (GI)-related cancers, including gastric carcinoma. We therefore sought to mechanistically determine IL33's potential role as a critical factor linking chronic inflammation and gastric carcinogenesis using gastritis-prone SAMP1/YitFc (SAMP) mice. METHODS SAMP and (parental control) AKR mice were assessed for baseline gastritis and progression to metaplasia. Expression/localization of IL33 and its receptor, ST2/IL1R4, were characterized in corpus tissues, and activation and neutralization studies were both performed targeting the IL33/ST2 axis. Dissection of immune pathways leading to metaplasia was evaluated, including eosinophil depletion studies using anti-IL5/anti-CCR3 treatment. RESULTS Progressive gastritis and, ultimately, intestinalized spasmolytic polypeptide-expressing metaplasia (SPEM) was detected in SAMP stomachs, which was absent in AKR but could be moderately induced with exogenous, recombinant IL33. Robust peripheral (bone marrow) expansion of eosinophils and local recruitment of both eosinophils and IL33-expressing M2 macrophages into corpus tissues were evident in SAMP. Interestingly, IL33 blockade did not affect bone marrow-derived expansion and local infiltration of eosinophils, but markedly decreased M2 macrophages and SPEM features, while eosinophil depletion caused a significant reduction in both local IL33-producing M2 macrophages and SPEM in SAMP. CONCLUSIONS IL33 promotes metaplasia and the sequelae of eosinophil-dependent downstream infiltration of IL33-producing M2 macrophages leading to intestinalized SPEM in SAMP, suggesting that IL33 represents a critical link between chronic gastritis and intestinalizing metaplasia that may serve as a potential therapeutic target for preneoplastic conditions of the GI tract.
Collapse
Affiliation(s)
| | - Luca Pastorelli
- Department of Pathology; Department of IRCCS Policlinico San Donato, Gastroenterology & Gastrointestinal Endoscopy Unit, San Donato Milanese, 20097 and Department of Biomedical Sciences, University of Milan, Milan, 20122, Italy
| | - Christine P. Petersen
- Department of Department of Surgery and the Epithelial Biology Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ludovica F. Buttò
- Department of Medicine/Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | | | - Silviu A. Locovei
- Department of Pathology; Department of Medicine/Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | | | | | | | | | - Fabio Cominelli
- Department of Medicine/Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | - Jason C. Mills
- Department of Medicine, Gastroenterology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James R. Goldenring
- Department of Department of Surgery and the Epithelial Biology Center, Vanderbilt University, Nashville, TN, 37235, USA
| | | |
Collapse
|
6
|
Menghini P, Corridoni D, Buttó LF, Osme A, Shivaswamy S, Lam M, Bamias G, Pizarro TT, Rodriguez-Palacios A, Dinarello CA, Cominelli F. Neutralization of IL-1α ameliorates Crohn's disease-like ileitis by functional alterations of the gut microbiome. Proc Natl Acad Sci U S A 2019; 116:26717-26726. [PMID: 31843928 PMCID: PMC6936591 DOI: 10.1073/pnas.1915043116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Crohn's disease and ulcerative colitis are chronic and progressive inflammatory bowel diseases (IBDs) that are attributed to dysregulated interactions between the gut microbiome and the intestinal mucosa-associated immune system. There are limited studies investigating the role of either IL-1α or IL-1β in mouse models of colitis, and no clinical trials blocking either IL-1 have yet to be performed. In the present study, we show that neutralization of IL-1α by a specific monoclonal antibody against murine IL-1α was highly effective in reducing inflammation and damage in SAMP mice, mice that spontaneously develop a Crohn's-like ileitis. Anti-mouse IL-1α significantly ameliorated the established, chronic ileitis and also protected mice from developing acute DSS-induced colitis. Both were associated with taxonomic divergence of the fecal gut microbiome, which was treatment-specific and not dependent on inflammation. Anti-IL-1α administration led to a decreased ratio of Proteobacteria to Bacteroidetes, decreased presence of Helicobacter species, and elevated representation of Mucispirillum schaedleri and Lactobacillus salivarius. Such modification in flora was functionally linked to the antiinflammatory effects of IL-1α neutralization, as blockade of IL-1α was not effective in germfree SAMP mice. Furthermore, preemptive dexamethasone treatment of DSS-challenged SAMP mice led to changes in flora composition without preventing the development of colitis. Thus, neutralization of IL-1α changes specific bacterial species of the intestinal microbiome, which is linked to its antiinflammatory effects. These functional findings may be of significant value for patients with IBD, who may benefit from targeted IL-1α-based therapies.
Collapse
Affiliation(s)
- Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Daniele Corridoni
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Ludovica F Buttó
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Abdullah Osme
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | - Minh Lam
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Giorgos Bamias
- Gastrointestinal Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, 11527 Athens, Greece
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Alexander Rodriguez-Palacios
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | | | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
7
|
Chen J, Fan J, Wang S, Sun Z. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1. Hypertension 2018; 71:877-885. [PMID: 29581213 DOI: 10.1161/hypertensionaha.117.10560] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/09/2017] [Accepted: 03/01/2018] [Indexed: 01/04/2023]
Abstract
Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho (Skl) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease.
Collapse
Affiliation(s)
- Jianglei Chen
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jun Fan
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Shirley Wang
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
8
|
Saxena A, Lopes F, Poon KKH, McKay DM. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am J Physiol Gastrointest Liver Physiol 2017; 313:G26-G38. [PMID: 28450277 DOI: 10.1152/ajpgi.00070.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 01/31/2023]
Abstract
Irregular mitochondria structure and reduced ATP in some patients with IBD suggest that metabolic stress contributes to disease. Loss-of-function mutation in the nucleotide-binding oligomerization domain (NOD)-2 gene is a major susceptibility trait for IBD. Hence, we assessed if loss of NOD2 further impairs the epithelial barrier function instigated by disruption of mitochondrial ATP synthesis via the hydrogen ionophore dinitrophenol (DNP). NOD2 protein (virtually undetectable in epithelia under basal conditions) was increased in T84 (human colon cell line) cells treated with noninvasive Escherichia coli + DNP (16 h). Increased intracellular bacteria in wild-type (WT) and NOD2 knockdown (KD) cells and colonoids from NOD2-/- mice were mediated by reactive oxygen species (ROS) and the MAPK ERK1/2 pathways as determined by cotreatment with the antioxidant mitoTEMPO and the ERK inhibitor U0126: ROS was upstream of ERK1/2 activation. Despite increased E. coli in DNP-treated NOD2 KD compared with WT cells, there were no differences in the internalization of fluorescent inert beads or dead E. coli particles. This suggests that lack of killing in the NOD2 KD cells was responsible for the increased numbers of viable intracellular bacteria; a conclusion supported by evidence of reduced autophagy in NOD2 KD T84 epithelia. Thus, in a two-hit hypothesis, decreased barrier function due to dysfunctional mitochondrial is amplified by lack of NOD2 in transporting enterocytes: subsequently, greater numbers of bacteria entering the mucosa would be a significant inflammatory threat especially since individuals with NOD2 mutations have compromised macrophage and Paneth cell responses to bacteria.NEW & NOTEWORTHY Increased internalization of bacteria by epithelia with dysfunctional mitochondria (reduced ATP) is potentiated if the cells lack nucleotide-binding oligomerization domain 2 (NOD2), mutations in which are inflammatory bowel disease-susceptibility traits. Uptake of bacteria was dependent on reactive oxygen species and MAP-kinase activity, and the increased viable intracellular bacteria in NOD2-/- cells likely reflect a reduced ability to recognize and kill bacteria. Thus a significant barrier defect occurs with NOD2 deficiency in conjunction with metabolic stress that could contribute to inflammation.
Collapse
Affiliation(s)
- Alpana Saxena
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karen K H Poon
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Cominelli F, Arseneau KO, Rodriguez-Palacios A, Pizarro TT. Uncovering Pathogenic Mechanisms of Inflammatory Bowel Disease Using Mouse Models of Crohn's Disease-Like Ileitis: What is the Right Model? Cell Mol Gastroenterol Hepatol 2017; 4:19-32. [PMID: 28560286 PMCID: PMC5439236 DOI: 10.1016/j.jcmgh.2017.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis, together known as inflammatory bowel disease, are debilitating chronic disorders of unknown cause and cure. Our evolving understanding of these pathologies is enhanced greatly by the use of animal models of intestinal inflammation that allow in vivo mechanistic studies, preclinical evaluation of new therapies, and investigation into the causative factors that underlie disease pathogenesis. Several animal models, most commonly generated in mice, exist for the study of colitis. The appropriateness of their use often can be determined by their mode of generation (ie, chemical induction, T-cell transfer, targeted genetic manipulation, spontaneously occurring, and so forth), the type of investigation (mechanistic studies, pathogenic experiments, preclinical evaluations, and so forth), and the type of inflammation that occurs in the model (acute vs chronic colitis, tissue injury/repair, and so forth). Although most murine models of inflammatory bowel disease develop inflammation in the colon, Crohn's disease most commonly occurs in the terminal ileum, where a very limited number of mouse models manifest disease. This review discusses appropriate experimental applications for different mouse models of colitis, and highlights the particular utility of 2 highly relevant models of Crohn's-like ileitis-the spontaneous SAMP1/YitFc inbred mouse strain and the genetically engineered TnfΔAU-rich element/+ mouse model of tumor necrosis factor overexpression, both of which bear strong resemblance to the human condition. Similar to patients with Crohn's disease, SAMP1/YitFc ileitis develops spontaneously, without chemical, genetic, or immunologic manipulation, making this model particularly relevant for studies aimed at identifying the primary defect underlying the occurrence of Crohn's ileitis, as well as preclinical testing of novel treatment modalities.
Collapse
Affiliation(s)
- Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio,Correspondence Address correspondence to: Fabio Cominelli, MD, PhD, Division of Gastroenterology, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, Ohio 44106-5066. fax: (216) 844-7371.Division of GastroenterologyCase Western Reserve University School of Medicine11100 Euclid AvenueClevelandOhio 44106-5066
| | - Kristen O. Arseneau
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio,Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alexander Rodriguez-Palacios
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio,Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Theresa T. Pizarro
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
10
|
Omenetti S, Brogi M, Goodman WA, Croniger CM, Eid S, Huang AY, Laffi G, Roskams T, Cominelli F, Pinzani M, Pizarro TT. Dysregulated intrahepatic CD4 + T-cell activation drives liver inflammation in ileitis-prone SAMP1/YitFc mice. Cell Mol Gastroenterol Hepatol 2015; 1. [PMID: 26213712 PMCID: PMC4511857 DOI: 10.1016/j.jcmgh.2015.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Liver inflammation is a common extraintestinal manifestation of inflammatory bowel disease (IBD); however, whether liver involvement is a consequence of a primary intestinal defect or results from alternative pathogenic processes remains unclear. Therefore, we sought to determine the potential pathogenic mechanism(s) of concomitant liver inflammation in an established murine model of IBD. METHODS Liver inflammation and immune cell subsets were characterized in ileitis-prone SAMP1/YitFc (SAMP) and AKR/J (AKR) control mice, lymphocyte-depleted SAMP (SAMPxRag-1-/-), and immunodeficient SCID recipient mice receiving SAMP or AKR donor CD4+ T-cells. Proliferation and suppressive capacity of CD4+ T-effector (Teff) and T-regulatory (Treg) cells from gut-associated lymphoid tissue (GALT) and livers of SAMP and AKR mice were measured. RESULTS Surprisingly, prominent inflammation was detected in 4-wk-old SAMP livers, prior to histologic evidence of ileitis, while both disease phenotypes were absent in age-matched AKRs. SAMP liver disease was characterized by abundant infiltration of lymphocytes, required for hepatic inflammation to occur, a Th1-skewed environment, and phenotypically-activated CD4+ T-cells. SAMP intrahepatic CD4+ T-cells also had the ability to induce liver and ileal inflammation when adoptively transferred into SCID recipients, whereas GALT-derived CD4+ T-cells produced milder ileitis, but not liver inflammation. Interestingly, SAMP intrahepatic CD4+ Teff cells showed increased proliferation compared to both SAMP GALT- and AKR liver-derived CD4+ Teff cells, while SAMP intrahepatic Tregs were decreased among CD4+ T-cells and impaired in in vitro suppressive function compared to AKR. CONCLUSIONS Activated intrahepatic CD4+ T-cells induce liver inflammation and contribute to experimental ileitis via locally-impaired hepatic immunosuppressive function.
Collapse
Affiliation(s)
- Sara Omenetti
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,“DENOThe” Center, University of Florence, Florence, Italy
| | - Marco Brogi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,“DENOThe” Center, University of Florence, Florence, Italy
| | - Wendy A. Goodman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Colleen M. Croniger
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alex Y. Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Giacomo Laffi
- “DENOThe” Center, University of Florence, Florence, Italy
| | - Tania Roskams
- Department of Morphology and Molecular Pathology, University of Leuven, Leuven, Belgium
| | - Fabio Cominelli
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,“DENOThe” Center, University of Florence, Florence, Italy,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Massimo Pinzani
- “DENOThe” Center, University of Florence, Florence, Italy,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio,UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, United Kingdom
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio,“DENOThe” Center, University of Florence, Florence, Italy,Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio,Correspondence Address correspondence to: Theresa T. Pizarro, PhD, Department of Pathology, Case Western Reserve University School of Medicine, 2103 Cornell Road, WRB 5534, Cleveland, Ohio 44106. fax: (216) 368-0494.
| |
Collapse
|
11
|
Involvement of oxidative stress in SAMP10 mice with age-related neurodegeneration. Neurol Sci 2014; 36:743-50. [PMID: 25491662 DOI: 10.1007/s10072-014-2029-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/03/2014] [Indexed: 12/23/2022]
Abstract
Age-related changes in the brain tissue are reflected in many aspects. We sought to determine the morphology, Nissl bodies, behavioral appearance and oxidative stress in the brain using SAMP10 mice, a substrain of the senescence-accelerated mouse. SAMP10 mice groups divided by different ages (3, 5, 8 and 14 months) were compared with those of control groups with the above corresponding ages. Cortical thickness, Nissl bodies, behavioral appearance and oxidative stress were evaluated through image software, thionine staining, step-down test and colorimetry, respectively. The weight and cortical thickness of the brain in SAMP10 mice significantly reduced from 8 months of age. The results showed that the number of Nissl bodies decreased or Nissl bodies shrank with dark staining in histology. The same result appeared in a step-down test. As the SAMP10 mice grew older, the oxidative stress-related markers superoxide dismutase decreased and malondialdehyde increased after 8 months. Glutathione peroxidase activities showed no age-related changes. The changes of brain morphology and productions of oxidative stress in the brain tissue might contribute to the behavioral abnormality. Deceleration of age-related production of oxidative stress might be expected to be a potent strategy for anti-aging interventions.
Collapse
|
12
|
Tigno-Aranjuez JT, Benderitter P, Rombouts F, Deroose F, Bai X, Mattioli B, Cominelli F, Pizarro TT, Hoflack J, Abbott DW. In vivo inhibition of RIPK2 kinase alleviates inflammatory disease. J Biol Chem 2014; 289:29651-64. [PMID: 25213858 DOI: 10.1074/jbc.m114.591388] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The RIPK2 kinase transduces signaling downstream of the intracellular peptidoglycan sensors NOD1 and NOD2 to promote a productive inflammatory response. However, excessive NOD2 signaling has been associated with numerous diseases, including inflammatory bowel disease (IBD), sarcoidosis and inflammatory arthritis, making pharmacologic inhibition of RIPK2 an appealing strategy. In this work, we report the generation, identification, and evaluation of novel RIPK2 specific inhibitors. These compounds potently inhibit the RIPK2 tyrosine kinase activity in in vitro biochemical assays and cellular assays, as well as effectively reduce RIPK2-mediated effects in an in vivo peritonitis model. In conjunction with the development of these inhibitors, we have also defined a panel of genes whose expression is regulated by RIPK2 kinase activity. Such RIPK2 activation markers may serve as a useful tool for predicting settings likely to benefit from RIPK2 inhibition. Using these markers and the FDA-approved RIPK2 inhibitor Gefitinib, we show that pharmacologic RIPK2 inhibition drastically improves disease in a spontaneous model of Crohn Disease-like ileitis. Furthermore, using novel RIPK2-specific inhibitors, we show that cellular recruitment is inhibited in an in vivo peritonitis model. Altogether, the data presented in this work provides a strong rationale for further development and optimization of RIPK2-targeted pharmaceuticals and diagnostics.
Collapse
Affiliation(s)
| | - Pascal Benderitter
- Oncodesign S.A., 20, Rue Jean Mazen, B.P. 27 627, 21 076 Dijon Cedex, France
| | - Frederik Rombouts
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frederik Deroose
- Asclepia Outsourcing Solutions, Damvalleistraat 49, B-9070 Destelbergen, Belgium
| | - XiaoDong Bai
- RNA Center, Case Western Reserve University, Cleveland, Ohio 44106-4973, and
| | - Benedetta Mattioli
- From the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-4973
| | - Fabio Cominelli
- From the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-4973, Division of Gastroenterology, Department of Medicine, University Hospitals of Cleveland, Cleveland, Ohio 44106-4973
| | - Theresa T Pizarro
- From the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-4973
| | - Jan Hoflack
- Oncodesign S.A., 20, Rue Jean Mazen, B.P. 27 627, 21 076 Dijon Cedex, France
| | - Derek W Abbott
- From the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106-4973,
| |
Collapse
|
13
|
Jones-Hall YL, Grisham MB. Immunopathological characterization of selected mouse models of inflammatory bowel disease: Comparison to human disease. ACTA ACUST UNITED AC 2014; 21:267-88. [PMID: 24935242 DOI: 10.1016/j.pathophys.2014.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic, relapsing conditions of multifactorial etiology. The two primary diseases of IBD are Crohn's disease (CD) and ulcerative colitis (UC). Both entities are hypothesized to occur in genetically susceptible individuals due to microbial alterations and environmental contributions. The exact etiopathogenesis, however, is not known for either disease. A variety of mouse models of CD and UC have been developed to investigate the pathogenesis of these diseases and evaluate treatment modalities. Broadly speaking, the mouse models can be divided into 4 categories: genetically engineered, immune manipulated, spontaneous and erosive/chemically induced. No one mouse model completely recapitulates the immunopathology of CD or UC, however each model possesses particular similarities to human IBD and offers advantageous for specific details of IBD pathogenesis. Here we discuss the more commonly used models in each category and critically evaluate how the immunopathology induced compares to CD or UC, as well as the advantages and disadvantages associated with each model.
Collapse
Affiliation(s)
- Yava L Jones-Hall
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906, United States.
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| |
Collapse
|
14
|
Ernst PB, Erickson LD, Loo WM, Scott KG, Wiznerowicz EB, Brown CC, Torres-Velez FJ, Alam MS, Black SG, McDuffie M, Feldman SH, Wallace JL, McKnight GW, Padol IT, Hunt RH, Tung KS. Spontaneous autoimmune gastritis and hypochlorhydria are manifest in the ileitis-prone SAMP1/YitFcs mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G105-15. [PMID: 21921286 PMCID: PMC3345967 DOI: 10.1152/ajpgi.00194.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4(+) T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract.
Collapse
Affiliation(s)
| | | | | | - K. G. Scott
- 6Department of Biology, University of Manitoba, Winnipeg, Manitoba;
| | | | - C. C. Brown
- 7Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia;
| | - F. J. Torres-Velez
- 8Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, Bethesda; and
| | - M. S. Alam
- 9Immunobiology Branch, Center for Food Safety and Nutrition, US Food and Drug Administration, Laurel, Maryland
| | | | | | - S. H. Feldman
- 5Center for Comparative Medicine, University of Virginia, Charlottesville, Virginia;
| | - J. L. Wallace
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - G. W. McKnight
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - I. T. Padol
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | - R. H. Hunt
- 10Department of Medicine and The Farncombe Institute, McMaster University, Hamilton, Ontario, Canada;
| | | |
Collapse
|