1
|
Yang ZZ, Parchem RJ. The role of noncoding RNAs in pancreatic birth defects. Birth Defects Res 2023; 115:1785-1808. [PMID: 37066622 PMCID: PMC10579456 DOI: 10.1002/bdr2.2178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Congenital defects in the pancreas can cause severe health issues such as pancreatic cancer and diabetes which require lifelong treatment. Regenerating healthy pancreatic cells to replace malfunctioning cells has been considered a promising cure for pancreatic diseases including birth defects. However, such therapies are currently unavailable in the clinic. The developmental gene regulatory network underlying pancreatic development must be reactivated for in vivo regeneration and recapitulated in vitro for cell replacement therapy. Thus, understanding the mechanisms driving pancreatic development will pave the way for regenerative therapies. Pancreatic progenitor cells are the precursors of all pancreatic cells which use epigenetic changes to control gene expression during differentiation to generate all of the distinct pancreatic cell types. Epigenetic changes involving DNA methylation and histone modifications can be controlled by noncoding RNAs (ncRNAs). Indeed, increasing evidence suggests that ncRNAs are indispensable for proper organogenesis. Here, we summarize recent insight into the role of ncRNAs in the epigenetic regulation of pancreatic development. We further discuss how disruptions in ncRNA biogenesis and expression lead to developmental defects and diseases. This review summarizes in vivo data from animal models and in vitro studies using stem cell differentiation as a model for pancreatic development.
Collapse
Affiliation(s)
- Ziyue Zoey Yang
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ronald J Parchem
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Du W, Liu G, Shi N, Tang D, Ferdek PE, Jakubowska MA, Liu S, Zhu X, Zhang J, Yao L, Sang X, Zou S, Liu T, Mukherjee R, Criddle DN, Zheng X, Xia Q, Berggren PO, Huang W, Sutton R, Tian Y, Huang W, Fu X. A microRNA checkpoint for Ca 2+ signaling and overload in acute pancreatitis. Mol Ther 2022; 30:1754-1774. [PMID: 35077860 PMCID: PMC9077382 DOI: 10.1016/j.ymthe.2022.01.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis (AP) is a common digestive disease without specific treatment, and its pathogenesis features multiple deleterious amplification loops dependent on translation, triggered by cytosolic Ca2+ ([Ca2+]i) overload; however, the underlying mechanisms in Ca2+ overload of AP remains incompletely understood. Here we show that microRNA-26a (miR-26a) inhibits pancreatic acinar cell (PAC) store-operated Ca2+ entry (SOCE) channel expression, Ca2+ overload, and AP. We find that major SOCE channels are post-transcriptionally induced in PACs during AP, whereas miR-26a expression is reduced in experimental and human AP and correlated with AP severity. Mechanistically, miR-26a simultaneously targets Trpc3 and Trpc6 SOCE channels and attenuates physiological oscillations and pathological elevations of [Ca2+]i in PACs. MiR-26a deficiency increases SOCE channel expression and [Ca2+]i overload, and significantly exacerbates AP. Conversely, global or PAC-specific overexpression of miR-26a in mice ameliorates pancreatic edema, neutrophil infiltration, acinar necrosis, and systemic inflammation, accompanied with remarkable improvements on pathological determinants related with [Ca2+]i overload. Moreover, pancreatic or systemic administration of an miR-26a mimic to mice significantly alleviates experimental AP. These findings reveal a previously unknown mechanism underlying AP pathogenesis, establish a critical role for miR-26a in Ca2+ signaling in the exocrine pancreas, and identify a potential target for the treatment of AP.
Collapse
Affiliation(s)
- Wenya Du
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Geng Liu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Pawel E Ferdek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Monika A Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Shiyu Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xinyue Zhu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Jiayu Zhang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Xiongbo Sang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Sailan Zou
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - David N Criddle
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Xiaofeng Zheng
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Per-Olof Berggren
- Center for Diabetes and Metabolism Research, Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK.
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China.
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; West China Biobanks, Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 Sichuan, China.
| |
Collapse
|
4
|
Huang D, Wang R. Exploring the mechanism of pancreatic cell fate decisions via cell-cell communication. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2401-2424. [PMID: 33892552 DOI: 10.3934/mbe.2021122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The endocrine and exocrine cells in pancreas originate initially from a group of apparently identical endoderm cells in the early gut. The endocrine and exocrine tissues are composed of islet/acinar and duct cells respectively. To explore the mechanism of pancreas cell fate decisions, we first construct a minimal mathematical model related to pancreatic regulations. The regulatory mechanism of acinar-to-islet cell conversion is revealed by bifurcation analysis of the model. In addition, Notch signaling is critical in determining the fate of endocrine and exocrine in the developing pancreas and it is a typical mediator of lateral inhibition which instructs adjacent cells to make different fate decisions. Next, we construct a multicellular model of cell-cell communication mediated by Notch signaling with trans-activation and cis-inhibition. The roles of Notch signaling in regulating fate decisions of endocrine and exocrine cells during the differentiation of pancreatic cells are explored. The results indicate that high (or low) level of Notch signaling drive cells to select the fate of exocrine (or endocrine) progenitor cells. The networks and the models presented here might be good candidates for providing qualitative mechanisms of pancreatic cell fate decisions. These results can also provide some insight on choosing perturbation strategies for further experimental analysis.
Collapse
Affiliation(s)
- Dasong Huang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Collet L, Ghurburrun E, Meyers N, Assi M, Pirlot B, Leclercq IA, Couvelard A, Komuta M, Cros J, Demetter P, Lemaigre FP, Borbath I, Jacquemin P. Kras and Lkb1 mutations synergistically induce intraductal papillary mucinous neoplasm derived from pancreatic duct cells. Gut 2020; 69:704-714. [PMID: 31154393 DOI: 10.1136/gutjnl-2018-318059] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pancreatic cancer can arise from precursor lesions called intraductal papillary mucinous neoplasms (IPMN), which are characterised by cysts containing papillae and mucus-producing cells. The high frequency of KRAS mutations in IPMN and histological analyses suggest that oncogenic KRAS drives IPMN development from pancreatic duct cells. However, induction of Kras mutation in ductal cells is not sufficient to generate IPMN, and formal proof of a ductal origin of IPMN is still missing. Here we explore whether combining oncogenic KrasG12D mutation with an additional gene mutation known to occur in human IPMN can induce IPMN from pancreatic duct cells. DESIGN We created and phenotyped mouse models in which mutations in Kras and in the tumour suppressor gene liver kinase B1 (Lkb1/Stk11) are conditionally induced in pancreatic ducts using Cre-mediated gene recombination. We also tested the effect of β-catenin inhibition during formation of the lesions. RESULTS Activating KrasG12D mutation and Lkb1 inactivation synergised to induce IPMN, mainly of gastric type and with malignant potential. The mouse lesions shared several features with human IPMN. Time course analysis suggested that IPMN developed from intraductal papillae and glandular neoplasms, which both derived from the epithelium lining large pancreatic ducts. β-catenin was required for the development of glandular neoplasms and subsequent development of the mucinous cells in IPMN. Instead, the lack of β-catenin did not impede formation of intraductal papillae and their progression to papillary lesions in IPMN. CONCLUSION Our work demonstrates that IPMN can result from synergy between KrasG12D mutation and inactivation of a tumour suppressor gene. The ductal epithelium can give rise to glandular neoplasms and papillary lesions, which probably both contribute to IPMN formation.
Collapse
Affiliation(s)
- Louis Collet
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Elsa Ghurburrun
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Nora Meyers
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Mohamad Assi
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Boris Pirlot
- Université catholique de Louvain, IREC, Brussels, Belgium
| | | | - Anne Couvelard
- Université Paris Diderot, U1149, Paris, France.,Hôpital Bichat, Department of Pathology, AP-HP, DHU UNITY, Paris, France
| | - Mina Komuta
- Université catholique de Louvain, Cliniques universitaires Saint- Luc, Department of Pathology, Brussels, Belgium
| | - Jérôme Cros
- Hôpital Beaujon, Department of Pathology, INSERM U1149, Paris, France
| | - Pieter Demetter
- Université libre de Bruxelles, Erasme University Hospital, Department of Pathology, Brussels, Belgium
| | | | - Ivan Borbath
- Université catholique de Louvain, IREC, Brussels, Belgium.,Université catholique de Louvain, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
6
|
Wu Y, Liu L, Bian C, Diao Q, Nisar MF, Jiang X, Bartsch JW, Zhong M, Hu X, Zhong JL. MicroRNA let-7b inhibits keratinocyte differentiation by targeting IL-6 mediated ERK signaling in psoriasis. Cell Commun Signal 2018; 16:58. [PMID: 30219085 PMCID: PMC6138911 DOI: 10.1186/s12964-018-0271-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022] Open
Abstract
Background The extensive involvement of microRNA (miRNA) in the pathophysiology of psoriasis is well documented. However, in order for this information to be useful in therapeutic manipulation of miRNA levels, it is essential that detailed functional mechanisms are elucidated. This study aimed to explore the effects of IL-6 targeting by let-7b and ERK1/2 mediated signaling on keratinocyte differentiation in psoriasis. Methods Following imiquimod cream (IMQ) application to let-7bTG (keratinocyte-specific let-7b overexpression mouse) and control mice for 7 days, we analyzed erythema, scaling and thickening of skin. A dual luciferase reporter assay and bioinformatics was carried out to detect target gene of let-7b. Additionally, the differentiation markers were measured. Immunohistochemistry analyses demonstrate a relationship of let-7b with IL-6 and ERK signaling. Results we found let-7bTG inhibits acanthosis and reduces the disease severity by treatment with IMQ compared to wild-type mice. Further study illustrated that let-7b promotes differentiation of keratinocytes in vivo and in vitro. Using bioinformatics and reporter gene assays, we found that IL-6 is a target gene of let-7b. In psoriasis, high expression levels of IL-6 lead to increased acivation of p-ERK1/2. High levels of let-7bTG transgene expression suppresses IL-6 expression and leads to increased keratinocyte differentiation. Moreover, let-7b acts as an upstream negative regulator of the ERK signaling pathway in keratinocytes of psoriasis. Conclusions Our result reveals a previously unknown mechanism for regulation of IL-6 levels during psoriasis by let-7b and highlights a critical role for the ERK1/2 signaling pathway in epidermal differentiation during psoriasis. Trial registration The ethical approval for this study was from the Affiliated Hospital of Medical University of Anhui _ Fast_ PJ2017–11–14. Electronic supplementary material The online version of this article (10.1186/s12964-018-0271-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wu
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Liu Liu
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunxiang Bian
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qingchun Diao
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Muhammad Farrukh Nisar
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China.,Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Xuemei Jiang
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jörg W Bartsch
- Philipps University Marburg, Department of Neurosurgery, Baldingerstr, 35033, Marburg, Germany
| | - Maojiao Zhong
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiangyu Hu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China
| | - Julia Li Zhong
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, college of Bioengineering, Chongqing University, Chongqing, 400044, China. .,Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, No. 40 Daomenkou St., District Yuzhong, Chongqing, 400011, China.
| |
Collapse
|
7
|
Guo J, Jin D, Wu Y, Yang L, Du J, Gong K, Chen W, Dai J, Miao S, Xi S. The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatin-resistant non-small cell lung cancer cells. EBioMedicine 2018; 35:204-221. [PMID: 30146342 PMCID: PMC6419862 DOI: 10.1016/j.ebiom.2018.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance has become the leading cause
of mortality in non-small cell lung cancer (NSCLC). miRNA dysregulation
significantly contributes to tumor progression. In this study, we found that
miR-495 was significantly downregulated in lung cancer tissue specimens. This
study aimed to elucidate the functions, direct target genes, and molecular
mechanisms of miR-495 in lung cancer. miR-495 downregulated its substrate UBE2C
through direct interaction with UBE2C 3′- untranslated region. UBE2C is a
proto-oncogene activated in lung cancer; however, its role in chemotherapeutic
resistance is unclear. Herein, UBE2C expression levels were higher in
DDP-resistant NSCLC cells; this was associated with the proliferation, invasion,
and DDP resistance in induced cisplatin-resistant NSCLC cells. Furthermore,
epithelial–mesenchymal transitions (EMT) contributed to DDP resistance.
Moreover, UBE2C knockdown downregulated vimentin. In contrast, E-cadherin was
upregulated. Importantly, miR-495 and UBE2C were associated with cisplatin
resistance. We attempted to evaluate their effects on cell proliferation and
cisplatin resistance. We also performed EMT, cell migration, and invasion assays
in DDP-resistant NSCLC cells overexpressing miR-495 and under-expressing UBE2C.
Furthermore, in silico assays coupled with western blotting and luciferase
assays revealed that UBE2C directly binds to the 5′-UTR of the drug-resistance
genes ABCG2 and ERCC1.
Furthermore, miR-495 downregulated ABCG2 and
ERCC1 via regulation of UBE2C. Together, the present
results indicate that the miR495-UBE2C-ABCG2/ERCC1 axis reverses DDP resistance
via downregulation of anti-drug genes and reducing EMT in DDP-resistant NSCLC
cells.
Collapse
Affiliation(s)
- Jiwei Guo
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China.
| | - Dan Jin
- Department of Pain Management, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Yan Wu
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Lijuan Yang
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Jing Du
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Kaikai Gong
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Weiwei Chen
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Juanjuan Dai
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Shuang Miao
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| | - Sichuan Xi
- Cancer research institute, Binzhou Medical University Hospital, Binzhou 256603, PR China
| |
Collapse
|
8
|
Ghurburrun E, Borbath I, Lemaigre FP, Jacquemin P. Liver and Pancreas: Do Similar Embryonic Development and Tissue Organization Lead to Similar Mechanisms of Tumorigenesis? Gene Expr 2018; 18:149-155. [PMID: 29580319 PMCID: PMC6190115 DOI: 10.3727/105221618x15216414278706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The liver and pancreas are closely associated organs that share a common embryological origin. They display amphicrine properties and have similar exocrine organization with parenchymal cells, namely, hepatocytes and acinar cells, secreting bile and pancreatic juice into the duodenum via a converging network of bile ducts and pancreatic ducts. Here we compare and highlight the similarities of molecular mechanisms leading to liver and pancreatic cancer development. We suggest that unraveling tumor development in an organ may provide insight into our understanding of carcinogenesis in the other organ.
Collapse
Affiliation(s)
- Elsa Ghurburrun
- *Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Ivan Borbath
- †Université catholique de Louvain, Department of Hepato-Gastro-Enterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Patrick Jacquemin
- *Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
9
|
Augereau C, Collet L, Vargiu P, Guerra C, Ortega S, Lemaigre FP, Jacquemin P. Chronic pancreatitis and lipomatosis are associated with defective function of ciliary genes in pancreatic ductal cells. Hum Mol Genet 2018; 25:5017-5026. [PMID: 28159992 DOI: 10.1093/hmg/ddw332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic diseases associated with defects in primary cilia are classified as ciliopathies. Pancreatic lesions and ductal cysts are found in patients with ciliopathic polycystic kidney diseases suggesting a close connection between pancreatic defects and primary cilia. Here we investigate the role of two genes whose deletion is known to cause primary cilium defects, namely Hnf6 and Lkb1, in pancreatic ductal homeostasis. We find that mice with postnatal duct-specific deletion of Hnf6 or Lkb1 show duct dilations. Cells lining dilated ducts present shorter cilia with swollen tips, suggesting defective intraciliary transport. This is associated with signs of chronic pancreatitis, namely acinar-to-ductal metaplasia, acinar proliferation and apoptosis, presence of inflammatory infiltrates, fibrosis and lipomatosis. Our data reveal a tight association between ductal ciliary defects and pancreatitis with perturbed acinar homeostasis and differentiation. Such injuries can account for the increased risk to develop pancreatic cancer in Peutz-Jeghers patients who carry LKB1 loss-of-function mutations.
Collapse
Affiliation(s)
- Cécile Augereau
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Louis Collet
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Pierfrancesco Vargiu
- Transgenic Mice Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Guerra
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Sagrario Ortega
- Transgenic Mice Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
10
|
Xiang H, Tao X, Xia S, Qu J, Song H, Liu J, Shang D. Targeting MicroRNA Function in Acute Pancreatitis. Front Physiol 2017; 8:726. [PMID: 28983256 PMCID: PMC5613139 DOI: 10.3389/fphys.2017.00726] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disorder that featured by acute inflammatory responses leading to systemic inflammatory response syndrome (SIRS) or multiple organ failure. A worldwide increase in annual incidence has been observed during the past decade with high acute hospitalization and mortality. Lack of any specific treatment for AP, even to this day, is a reminder that there is much to be learned about the exact pathogenesis of AP. Fortunately, the discovery of microRNA (miRNA) has started an entirely new thought process regarding the molecular mechanism associated with the disease processes. Given the extensive effort made on miRNA research, certain types of miRNA have been identified across a variety of biological processes, including cell differentiation, apoptosis, metabolism, and inflammatory responses. Mutations in miRNA sequences or deregulation of miRNA expression may contribute to the alteration of a pivotal physiological function leading to AP. Designing miRNA-related tools for AP diagnosis and treatment presents a novel and potential research frontier. In this mini-review, we summarize the current knowledge of various miRNAs closely interacting with AP and the possible development of targeted miRNA therapies in this disease, which may benefit the development of potential disease biomarkers and novel treatment targets for future medical implications.
Collapse
Affiliation(s)
- Hong Xiang
- College of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical UniversityDalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Jianjun Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Dong Shang
- College of Integrative Medicine, Dalian Medical UniversityDalian, China.,Department of General Surgery, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| |
Collapse
|
11
|
Chen H, Wang X, Bai J, He A. Expression, regulation and function of miR-495 in healthy and tumor tissues. Oncol Lett 2017; 13:2021-2026. [PMID: 28454357 DOI: 10.3892/ol.2017.5727] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
MicroRNA-495 (miR-495) is a small non-coding RNA encoded by a gene located on chromosome 14 (14q32.31). Its expression is regulated by the transcription factors EF12 and EF47, in addition to promoter methylation status and the fusion oncoprotein mixed-lineage leukemia-AF9. Previous studies suggest that miR-495 is involved in various developmental, immunological and inflammatory processes in healthy tissue, and in the proliferation, invasion, metastasis and drug resistance of cancer cells. The role miR-495 serves in tumors is controversial. miR-495 primarily functions as a tumor suppressor; however, in a number of cases it acts as an oncogene. miR-495 has potential applications as a diagnostic and prognostic marker, and as a therapeutic target for genetic and pharmacological manipulation in the treatment of various diseases.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaman Wang
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ju Bai
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Aili He
- Department of Hematology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China.,National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
12
|
Wang H, Jiang Z, Chen H, Wu X, Xiang J, Peng J. MicroRNA-495 Inhibits Gastric Cancer Cell Migration and Invasion Possibly via Targeting High Mobility Group AT-Hook 2 (HMGA2). Med Sci Monit 2017; 23:640-648. [PMID: 28159956 PMCID: PMC5304946 DOI: 10.12659/msm.898740] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer is one of the most common malignancies, and has a high mortality rate. miR-495 acts as a suppressor in some cancers and HMGA2 (high mobility group AT-hook 2) is a facilitator for cell growth and epithelial-mesenchymal transition (EMT), but little is known about their effect in gastric cancer. This study aimed to investigate the role and mechanism of miR-495 in gastric cancer. Material/Methods miR-495 levels were quantitatively analyzed in gastric cancer tissue and GES-1, SGC-7901, BGC-823, and HGC-27 cell lines by qRT-PCR. Levels of miR-495 and HMGA2 were altered by cell transfection, after which cell migration and invasion were examined by Transwell and E-cadherin (CDH1); vimentin (VIM), and alpha smooth muscle actin (ACTA2) were detected by qRT-PCR and Western blotting. The interaction between miR-495 and HMGA2 was verified by dual-luciferase reporter assay. Results miR-495 was significantly downregulated in cancer tissue and cell lines (p<0.05). Its overexpression inhibited cell migration and invasion, elevated CDH1, and inhibited VIM and ACTA2 levels in BGC-823 and HGC-27 cells. miR-495 directly inhibited HMGA2, which was upregulated in gastric cancer tissue, and promoted cell migration and invasion, inhibited CDH1, and elevated VIM and ACTA2. Conclusions miR-495 acts as a tumor suppressor in gastric cancer by inhibiting cell migration and invasion, which may be associated with its direct inhibition on HMGA2. These results suggest a promising therapeutic strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- Huashe Wang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Zhipeng Jiang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Honglei Chen
- Department of Digestive Endoscopic Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Jun Xiang
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| | - Junsheng Peng
- Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
13
|
Alterations of Epigenetic Regulators in Pancreatic Cancer and Their Clinical Implications. Int J Mol Sci 2016; 17:ijms17122138. [PMID: 27999365 PMCID: PMC5187938 DOI: 10.3390/ijms17122138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancer types with a five-year survival less than 7%. Emerging evidence revealed that many genetic alterations in pancreatic cancer target epigenetic regulators. Some of these mutations are driver mutations in cancer development. Several most important mechanisms of epigenetic regulations include DNA methylation, histone modifications (methylation, acetylation, and ubiquitination), chromatin remodeling, and non-coding ribonucleic acids (RNAs). These modifications can alter chromatin structure and promoter accessibility, and thus lead to aberrant gene expression. However, exactly how these alterations affect epigenetic reprogramming in pancreatic cancer cells and in different stages of tumor development is still not clear. This mini-review summarizes the current knowledge of epigenetic alterations in pancreatic cancer development and progression, and discusses the clinical applications of epigenetic regulators as diagnostic biomarkers and therapeutic targets in pancreatic cancer.
Collapse
|
14
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
15
|
Abstract
Neoplastic transformation requires changes in cellular identity. Emerging evidence increasingly points to cellular reprogramming, a process during which fully differentiated and functional cells lose aspects of their identity while gaining progenitor characteristics, as a critical early step during cancer initiation. This cell identity crisis persists even at the malignant stage in certain cancers, suggesting that reactivation of progenitor functions supports tumorigenicity. Here, we review recent findings that establish the essential role of cellular reprogramming during neoplastic transformation and the major players involved in it with a special emphasis on pancreatic cancer.
Collapse
Affiliation(s)
- Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
De Cock A, Michiels T. Cellular microRNAs Repress Vesicular Stomatitis Virus but Not Theiler's Virus Replication. Viruses 2016; 8:75. [PMID: 26978386 PMCID: PMC4810265 DOI: 10.3390/v8030075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/27/2022] Open
Abstract
Picornavirus’ genomic RNA is a positive-stranded RNA sequence that also serves as a template for translation and replication. Cellular microRNAs were reported to interfere to different extents with the replication of specific picornaviruses, mostly acting as inhibitors. However, owing to the high error rate of their RNA-dependent RNA-polymerases, picornavirus quasi-species are expected to evolve rapidly in order to lose any detrimental microRNA target sequence. We examined the genome of Theiler’s murine encephalomyelitis virus (TMEV) for the presence of under-represented microRNA target sequences that could have been selected against during virus evolution. However, little evidence for such sequences was found in the genome of TMEV and introduction of the most under-represented microRNA target (miR-770-3p) in TMEV did not significantly affect viral replication in cells expressing this microRNA. To test the global impact of cellular microRNAs on viral replication, we designed a strategy based on short-term Dicer inactivation in mouse embryonic fibroblasts. Short-term Dicer inactivation led to a >10-fold decrease in microRNA abundance and strongly increased replication of Vesicular stomatitis virus (VSV), which was used as a microRNA-sensitive control virus. In contrast, Dicer inactivation did not increase TMEV replication. In conclusion, cellular microRNAs appear to exert little influence on Theiler’s virus fitness.
Collapse
Affiliation(s)
- Aurélie De Cock
- Université Catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 Avenue Hippocrate, B-1200 Brussels, Belgium.
| | - Thomas Michiels
- Université Catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 Avenue Hippocrate, B-1200 Brussels, Belgium.
| |
Collapse
|
17
|
Silencing Mist1 Gene Expression Is Essential for Recovery from Acute Pancreatitis. PLoS One 2015; 10:e0145724. [PMID: 26717480 PMCID: PMC4696804 DOI: 10.1371/journal.pone.0145724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
Abstract
Acinar cells of the exocrine pancreas are tasked with synthesizing, packaging and secreting vast quantities of pro-digestive enzymes to maintain proper metabolic homeostasis for the organism. Because the synthesis of high levels of hydrolases is potentially dangerous, the pancreas is prone to acute pancreatitis (AP), a disease that targets acinar cells, leading to acinar-ductal metaplasia (ADM), inflammation and fibrosis—events that can transition into the earliest stages of pancreatic ductal adenocarcinoma. Despite a wealth of information concerning the broad phenotype associated with pancreatitis, little is understood regarding specific transcriptional regulatory networks that are susceptible to AP and the role these networks play in acinar cell and exocrine pancreas responses. In this study, we examined the importance of the acinar-specific maturation transcription factor MIST1 to AP damage and organ recovery. Analysis of wild-type and Mist1 conditional null mice revealed that Mist1 gene transcription and protein accumulation were dramatically reduced as acinar cells underwent ADM alterations during AP episodes. To test if loss of MIST1 function was primarily responsible for the damaged status of the organ, mice harboring a Cre-inducible Mist1 transgene (iMist1) were utilized to determine if sustained MIST1 activity could alleviate AP damage responses. Unexpectedly, constitutive iMist1 expression during AP led to a dramatic increase in organ damage followed by acinar cell death. We conclude that the transient silencing of Mist1 expression is critical for acinar cells to survive an AP episode, providing cells an opportunity to suppress their secretory function and regenerate damaged cells. The importance of MIST1 to these events suggests that modulating key pancreas transcription networks could ease clinical symptoms in patients diagnosed with pancreatitis and pancreatic cancer.
Collapse
|
18
|
Abstract
Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Evans Quilichini
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France
| | - Cécile Haumaitre
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France; Institut National de la Santé et de la Recherche Médicale (INSERM), France.
| |
Collapse
|
19
|
Grimont A, Pinho AV, Cowley MJ, Augereau C, Mawson A, Giry-Laterrière M, Van den Steen G, Waddell N, Pajic M, Sempoux C, Wu J, Grimmond SM, Biankin AV, Lemaigre FP, Rooman I, Jacquemin P. SOX9 regulates ERBB signalling in pancreatic cancer development. Gut 2015; 64:1790-9. [PMID: 25336113 DOI: 10.1136/gutjnl-2014-307075] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The transcription factor SOX9 was recently shown to stimulate ductal gene expression in pancreatic acinar-to-ductal metaplasia and to accelerate development of premalignant lesions preceding pancreatic ductal adenocarcinoma (PDAC). Here, we investigate how SOX9 operates in pancreatic tumourigenesis. DESIGN We analysed genomic and transcriptomic data from surgically resected PDAC and extended the expression analysis to xenografts from PDAC samples and to PDAC cell lines. SOX9 expression was manipulated in human cell lines and mouse models developing PDAC. RESULTS We found genetic aberrations in the SOX9 gene in about 15% of patient tumours. Most PDAC samples strongly express SOX9 protein, and SOX9 levels are higher in classical PDAC. This tumour subtype is associated with better patient outcome, and cell lines of this subtype respond to therapy targeting epidermal growth factor receptor (EGFR/ERBB1) signalling, a pathway essential for pancreatic tumourigenesis. In human PDAC, high expression of SOX9 correlates with expression of genes belonging to the ERBB pathway. In particular, ERBB2 expression in PDAC cell lines is stimulated by SOX9. Inactivating Sox9 expression in mice confirmed its role in PDAC initiation; it demonstrated that Sox9 stimulates expression of several members of the ERBB pathway and is required for ERBB signalling activity. CONCLUSIONS By integrating data from patient samples and mouse models, we found that SOX9 regulates the ERBB pathway throughout pancreatic tumourigenesis. Our work opens perspectives for therapy targeting tumourigenic mechanisms.
Collapse
Affiliation(s)
- Adrien Grimont
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Andreia V Pinho
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Mark J Cowley
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Cécile Augereau
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Amanda Mawson
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Marc Giry-Laterrière
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | | | - Nicola Waddell
- Australian Pancreatic Cancer Genome Initiative Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Marina Pajic
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Christine Sempoux
- Department of Pathology, Université catholique de Louvain, Cliniques Universitaires St Luc, Brussels, Belgium
| | - Jianmin Wu
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Sean M Grimmond
- Australian Pancreatic Cancer Genome Initiative Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia Wolfson Wohl Cancer Centre, University of Glasgow, Scotland, UK
| | - Andrew V Biankin
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia Wolfson Wohl Cancer Centre, University of Glasgow, Scotland, UK
| | | | - Ilse Rooman
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
20
|
Mills JC, Sansom OJ. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Sci Signal 2015; 8:re8. [PMID: 26175494 PMCID: PMC4858190 DOI: 10.1126/scisignal.aaa7540] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, postmitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the long-term maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like the stomach and intestine, reprogramming may allow mature cells to serve as reserve ("quiescent") stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, postmitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferation in the stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine.
Collapse
Affiliation(s)
- Jason C Mills
- Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| |
Collapse
|
21
|
Müller S, Raulefs S, Bruns P, Afonso-Grunz F, Plötner A, Thermann R, Jäger C, Schlitter AM, Kong B, Regel I, Roth WK, Rotter B, Hoffmeier K, Kahl G, Koch I, Theis FJ, Kleeff J, Winter P, Michalski CW. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer 2015; 14:94. [PMID: 25910082 PMCID: PMC4417536 DOI: 10.1186/s12943-015-0358-5] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/06/2015] [Indexed: 12/25/2022] Open
Abstract
Background Previous studies identified microRNAs (miRNAs) and messenger RNAs with significantly different expression between normal pancreas and pancreatic cancer (PDAC) tissues. Due to technological limitations of microarrays and real-time PCR systems these studies focused on a fixed set of targets. Expression of other RNA classes such as long intergenic non-coding RNAs or sno-derived RNAs has rarely been examined in pancreatic cancer. Here, we analysed the coding and non-coding transcriptome of six PDAC and five control tissues using next-generation sequencing. Results Besides the confirmation of several deregulated mRNAs and miRNAs, miRNAs without previous implication in PDAC were detected: miR-802, miR-2114 or miR-561. SnoRNA-derived RNAs (e.g. sno-HBII-296B) and piR-017061, a piwi-interacting RNA, were found to be differentially expressed between PDAC and control tissues. In silico target analysis of miR-802 revealed potential binding sites in the 3′ UTR of TCF4, encoding a transcription factor that controls Wnt signalling genes. Overexpression of miR-802 in MiaPaCa pancreatic cancer cells reduced TCF4 protein levels. Using Massive Analysis of cDNA Ends (MACE) we identified differential expression of 43 lincRNAs, long intergenic non-coding RNAs, e.g. LINC00261 and LINC00152 as well as several natural antisense transcripts like HNF1A-AS1 and AFAP1-AS1. Differential expression was confirmed by qPCR on the mRNA/miRNA/lincRNA level and by immunohistochemistry on the protein level. Conclusions Here, we report a novel lncRNA, sncRNA and mRNA signature of PDAC. In silico prediction of ncRNA targets allowed for assigning potential functions to differentially regulated RNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0358-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sören Müller
- Molecular BioSciences, Goethe University, Frankfurt am Main, Germany. .,GenXPro GmbH, Frankfurt Biotechnology Innovation Center, Frankfurt am Main, Germany. .,Molecular Bioinformatics Group, Institute of Computer Science, Cluster of Excellence Frankfurt 'Macromolecular Complexes' Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany.
| | - Susanne Raulefs
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | - Philipp Bruns
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | - Fabian Afonso-Grunz
- Molecular BioSciences, Goethe University, Frankfurt am Main, Germany. .,GenXPro GmbH, Frankfurt Biotechnology Innovation Center, Frankfurt am Main, Germany.
| | - Anne Plötner
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center, Frankfurt am Main, Germany.
| | - Rolf Thermann
- GFE Blut mbH, Frankfurt Biotechnology Innovation Center, Frankfurt am Main, Germany.
| | - Carsten Jäger
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | - Anna Melissa Schlitter
- Department of Pathology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | - Bo Kong
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | - Ivonne Regel
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | - W Kurt Roth
- GFE Blut mbH, Frankfurt Biotechnology Innovation Center, Frankfurt am Main, Germany.
| | - Björn Rotter
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center, Frankfurt am Main, Germany.
| | - Klaus Hoffmeier
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center, Frankfurt am Main, Germany.
| | - Günter Kahl
- Molecular BioSciences, Goethe University, Frankfurt am Main, Germany.
| | - Ina Koch
- Molecular Bioinformatics Group, Institute of Computer Science, Cluster of Excellence Frankfurt 'Macromolecular Complexes' Faculty of Computer Science and Mathematics, Frankfurt am Main, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum Munich, Neuherberg, Germany. .,Department of Mathematics, TU Munich, Boltzmannstrasse 3, Garching, Germany.
| | - Jörg Kleeff
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.
| | - Peter Winter
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center, Frankfurt am Main, Germany.
| | | |
Collapse
|
22
|
Bhajun R, Guyon L, Pitaval A, Sulpice E, Combe S, Obeid P, Haguet V, Ghorbel I, Lajaunie C, Gidrol X. A statistically inferred microRNA network identifies breast cancer target miR-940 as an actin cytoskeleton regulator. Sci Rep 2015; 5:8336. [PMID: 25673565 PMCID: PMC5389139 DOI: 10.1038/srep08336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/14/2015] [Indexed: 01/21/2023] Open
Abstract
MiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets. In one cluster containing three miRNAs, miR-612, miR-661 and miR-940, the annotated functions of the co-regulated genes suggested a role in small GTPase signalling. Although the three members of this cluster targeted the same subset of predicted genes, we showed that their overexpression impacted cell fates differently. miR-661 demonstrated enhanced phosphorylation of myosin II and an increase in cell invasion, indicating a possible oncogenic miRNA. On the contrary, miR-612 and miR-940 inhibit phosphorylation of myosin II and cell invasion. Finally, expression profiling in human breast tissues showed that miR-940 was consistently downregulated in breast cancer tissues
Collapse
Affiliation(s)
- Ricky Bhajun
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| | - Laurent Guyon
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| | - Amandine Pitaval
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| | - Eric Sulpice
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| | - Stéphanie Combe
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| | - Patricia Obeid
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| | - Vincent Haguet
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| | - Itebeddine Ghorbel
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| | - Christian Lajaunie
- 1] Center for Computational Biology - CBIO, Mines ParisTech, F-77300 Fontainebleau, France [2] Institut Curie, F-75248 Paris, France [3] INSERM, U900, F-75248 Paris, France
| | - Xavier Gidrol
- 1] Univ. Grenoble Alpes, iRTSV-BGE, F-38000 Grenoble, France [2] CEA, iRTSV-BGE, F-38000 Grenoble, France [3] INSERM, BGE, F-38000 Grenoble, France
| |
Collapse
|
23
|
Puri S, Folias AE, Hebrok M. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell 2014; 16:18-31. [PMID: 25465113 DOI: 10.1016/j.stem.2014.11.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we discuss the changes occurring in cellular states upon fate modulation and address how our understanding of the nature of this fluidity is shaping therapeutic approaches to pancreatic disorders such as diabetes and cancer.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexandra E Folias
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Wang YJ, McAllister F, Bailey JM, Scott SG, Hendley AM, Leach SD, Ghosh B. Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role in Kras-driven pancreatic neoplasia. PLoS One 2014; 9:e113127. [PMID: 25405615 PMCID: PMC4236134 DOI: 10.1371/journal.pone.0113127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
The role of miRNA processing in the maintenance of adult pancreatic acinar cell identity and during the initiation and progression of pancreatic neoplasia has not been studied in detail. In this work, we deleted Dicer specifically in adult pancreatic acinar cells, with or without simultaneous activation of oncogenic Kras. We found that Dicer is essential for the maintenance of acinar cell identity. Acinar cells lacking Dicer showed increased plasticity, as evidenced by loss of polarity, initiation of epithelial-to-mesenchymal transition (EMT) and acinar-to-ductal metaplasia (ADM). In the context of oncogenic Kras activation, the initiation of ADM and pancreatic intraepithelial neoplasia (PanIN) were both highly sensitive to Dicer gene dosage. Homozygous Dicer deletion accelerated the formation of ADM but not PanIN. In contrast, heterozygous Dicer deletion accelerated PanIN initiation, revealing complex roles for Dicer in the regulation of both normal and neoplastic pancreatic epithelial identity.
Collapse
Affiliation(s)
- Yue J. Wang
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Florencia McAllister
- The Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer M. Bailey
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sherri-Gae Scott
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Audrey M. Hendley
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D. Leach
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Bidyut Ghosh
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
25
|
Morris JP, Greer R, Russ HA, von Figura G, Kim GE, Busch A, Lee J, Hertel KJ, Kim S, Mcmanus M, Hebrok M. Dicer regulates differentiation and viability during mouse pancreatic cancer initiation. PLoS One 2014; 9:e95486. [PMID: 24788257 PMCID: PMC4006805 DOI: 10.1371/journal.pone.0095486] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/26/2014] [Indexed: 12/13/2022] Open
Abstract
miRNA levels are altered in pancreatic ductal adenocarcinoma (PDA), the most common and lethal pancreatic malignancy, and intact miRNA processing is essential for lineage specification during pancreatic development. However, the role of miRNA processing in PDA has not been explored. Here we study the role of miRNA biogenesis in PDA development by deleting the miRNA processing enzyme Dicer in a PDA mouse model driven by oncogenic Kras. We find that loss of Dicer accelerates Kras driven acinar dedifferentiation and acinar to ductal metaplasia (ADM), a process that has been shown to precede and promote the specification of PDA precursors. However, unconstrained ADM also displays high levels of apoptosis. Dicer loss does not accelerate development of Kras driven PDA precursors or PDA, but surprisingly, we observe that mouse PDA can develop without Dicer, although at the expense of proliferative capacity. Our data suggest that intact miRNA processing is involved in both constraining pro-tumorigenic changes in pancreatic differentiation as well as maintaining viability during PDA initiation.
Collapse
Affiliation(s)
- John P. Morris
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Renee Greer
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Holger A. Russ
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Guido von Figura
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Grace E. Kim
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Anke Busch
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Jonghyeob Lee
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Klemens J. Hertel
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Seung Kim
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael Mcmanus
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Fang Y, Yao Q, Chen Z, Xiang J, William FE, Gibbs RA, Chen C. Genetic and molecular alterations in pancreatic cancer: implications for personalized medicine. Med Sci Monit 2013; 19:916-26. [PMID: 24172537 PMCID: PMC3818103 DOI: 10.12659/msm.889636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent advances in human genomics and biotechnologies have profound impacts on medical research and clinical practice. Individual genomic information, including DNA sequences and gene expression profiles, can be used for prediction, prevention, diagnosis, and treatment for many complex diseases. Personalized medicine attempts to tailor medical care to individual patients by incorporating their genomic information. In a case of pancreatic cancer, the fourth leading cause of cancer death in the United States, alteration in many genes as well as molecular profiles in blood, pancreas tissue, and pancreas juice has recently been discovered to be closely associated with tumorigenesis or prognosis of the cancer. This review aims to summarize recent advances of important genes, proteins, and microRNAs that play a critical role in the pathogenesis of pancreatic cancer, and to provide implications for personalized medicine in pancreatic cancer.
Collapse
Affiliation(s)
- Yantian Fang
- Molecular Surgeon Research Center, Division of Surgical Research, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, U.S.A. and Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|