1
|
Jin K, Zhao D, Zhou J, Zhang X, Wang Y, Wu Z. Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8 + T cell dysfunction and suppress cervical cancer progression. Apoptosis 2024; 29:2108-2127. [PMID: 39404933 DOI: 10.1007/s10495-024-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/10/2024]
Abstract
Pulsed electromagnetic field (PEMF) therapy is a potential non-invasive treatment to modulate immune responses and inhibit tumor growth. Cervical cancer (CC) is influenced by IL-37-mediated immune regulation, making PEMF therapy a potential strategy to impede CC progression. This study aimed to elucidate the effects of PEMF on IL-37 regulation and its molecular mechanisms in CC. CC cell-xenografted mouse models, including IL-37 transgenic (IL-37tg) mice, were used to assess tumor growth through in vivo fluorescence imaging and analyze CC cell apoptosis via flow cytometry. TCGA-CESC transcriptome and clinical data were analyzed to identify key inflammation and immune-related genes. CD8+ T cell models were stimulated with PEMF, and apoptosis, oxidative stress, and inflammatory factor expression were analyzed through RT-qPCR, Western blot, and flow cytometry. PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis (p < 0.05). IL-37 interaction with SMAD3 impacted the p38/NF-κB signaling pathway, modulating CD8+ T cell activity and cytotoxicity. Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05). In vivo experiments with CC-bearing mice demonstrated that PEMF treatment downregulated IL-37 expression (p < 0.05), enhanced CD8+ T cell function, and inhibited tumor growth (p < 0.05). These molecular mechanisms were validated through RT-qPCR, Western blot, and immunohistochemistry. Thus, PEMF therapy inhibits CC progression by downregulating IL-37 and improving CD8+ T cell function via the SMAD3/p38/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ke Jin
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Dan Zhao
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun Zhou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xun Zhang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
2
|
Guo F, Wu Y, Liu J. Curcumin nanoparticles in heat stroke management. J Nanobiotechnology 2024; 22:559. [PMID: 39267043 PMCID: PMC11396141 DOI: 10.1186/s12951-024-02771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVE The exacerbation of extreme high-temperature events due to global climate change poses a significant challenge to public health, particularly impacting the central nervous system through heat stroke. This study aims to develop Poly(amidoamine) (PAMAM) nanoparticles loaded with curcumin (PAMAM@Cur) to enhance its therapeutic efficacy in hypothalamic neural damage in a heat stroke model and explore its potential mechanisms. METHODS Curcumin (Cur) was encapsulated into PAMAM nanoparticles through a hydrophobic interaction method, and various techniques were employed to characterize their physicochemical properties. A heat stroke mouse model was established to monitor body temperature and serum biochemical parameters, conduct behavioral assessments, histological examinations, and biochemical analyses. Transcriptomic and proteomic analyses were performed to investigate the therapeutic mechanisms of PAMAM@Cur, validated in an N2a cell model. RESULTS PAMAM@Cur demonstrated good stability, photostability, cell compatibility, significant blood-brain barrier (BBB) penetration capability, and effective accumulation in the brain. PAMAM@Cur markedly improved behavioral performance and neural cell structural integrity in heat stroke mice, alleviated inflammatory responses, with superior therapeutic effects compared to Cur or PAMAM alone. Multi-omics analysis revealed that PAMAM@Cur regulated antioxidant defense genes and iron death-related genes, particularly upregulating the PCBP2 protein, stabilizing SLC7A11 and GPX4 mRNA, and reducing iron-dependent cell death. CONCLUSION By enhancing the drug delivery properties of Cur and modulating molecular pathways relevant to disease treatment, PAMAM@Cur significantly enhances the therapeutic effects against hypothalamic neural damage induced by heat stroke, showcasing the potential of nanotechnology in improving traditional drug efficacy and providing new strategies for future clinical applications. SIGNIFICANCE This study highlights the outlook of nanotechnology in treating neurological disorders caused by heat stroke, offering a novel therapeutic approach with potential clinical applications.
Collapse
Affiliation(s)
- Fei Guo
- Emergency Trauma Surgery Department of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yizhan Wu
- Graduate School of Xinjiang Medical University, Urumqi, China
| | - Jiangwei Liu
- Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Tong X, Qiao S, Dong Z, Zhao X, Du X, Niu W. Targeting CSF1R in myeloid-derived suppressor cells: insights into its immunomodulatory functions in colorectal cancer and therapeutic implications. J Nanobiotechnology 2024; 22:409. [PMID: 38992688 PMCID: PMC11238447 DOI: 10.1186/s12951-024-02584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.
Collapse
Affiliation(s)
- Xin Tong
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, P. R. China
| | - Shifeng Qiao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, P. R. China
| | - Zhe Dong
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, P. R. China
| | - Xiaohui Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, P. R. China
| | - Xiaxia Du
- Department of Rehabilitation, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, P. R. China
| | - Wei Niu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning Province, 121000, P. R. China.
| |
Collapse
|
4
|
Chen Y, Mao X, Xu Y, Li L, Geng J, Dai T, Wang Q, Xue L, Tao L, Liu X. PTOV1-AS1 desensitizes colorectal cancer cells to 5-FU through depressing miR-149-5p to activate the positive feedback loop with Wnt/β-catenin pathway. Phytother Res 2024; 38:1313-1328. [PMID: 38194947 DOI: 10.1002/ptr.8095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
5-Fluorouracil is a commonly used chemotherapy drug for colorectal cancer. Resistance to 5-Fluorouracil remains a challenge. This research aimed to explore the mechanism of 5-Fluorouracil resistance in colorectal cancer. RT-qPCR and Western blot were used to determine the RNA and protein expression in both cells and exosome. Assays in vitro and in vivo were performed to measure the role of miR-149-5p in colorectal cancer cells. RIP, luciferase activity report, and RNA pulldown assay were applied to detect the association of PTOV1-AS1, SUV39H1, miR-149-5p, and FOXM1. MiR-149-5p was down-expressed in 5-Fluorouracil-resistant cells. MiR-149-5p enhanced the effectiveness of 5-Fluorouracil both in vitro and in vivo. Sensitive colorectal cancer cells released exosomal miR-149-5p to sensitize resistant cells to chemotherapy. Mechanistically, miR-149-5p targeted the FOXM1 to inactivate Wnt/β-catenin pathway, and PTOV1-AS1 recruited SUV39H1 to suppress miR-149-5p transcription, in turn activating Wnt/β-catenin pathway, and forming a positive feedback loop with FOXM1. PTOV1-AS1 inhibits miR-149-5p by a positive feedback loop with FOXM1-mediated Wnt/β-catenin pathway, which provides insights into a potential novel target for enhancing the effectiveness of chemotherapy in colorectal cancer patients.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaobei Mao
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yichen Xu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lin Li
- Department of Health, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jian Geng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tingting Dai
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijun Xue
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Leilei Tao
- Department of Medical Oncology, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Medical Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
5
|
Lee M, Kim YS, Lim S, Shin SH, Kim I, Kim J, Choi M, Kim JH, Koh SJ, Park JW, Shin HW. Protein stabilization of ITF2 by NF-κB prevents colitis-associated cancer development. Nat Commun 2023; 14:2363. [PMID: 37185280 PMCID: PMC10130090 DOI: 10.1038/s41467-023-38080-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic colonic inflammation is a feature of cancer and is strongly associated with tumorigenesis, but its underlying molecular mechanisms remain poorly understood. Inflammatory conditions increased ITF2 and p65 expression both ex vivo and in vivo, and ITF2 and p65 showed positive correlations. p65 overexpression stabilized ITF2 protein levels by interfering with the binding of Parkin to ITF2. More specifically, the C-terminus of p65 binds to the N-terminus of ITF2 and inhibits ubiquitination, thereby promoting ITF2 stabilization. Parkin acts as a E3 ubiquitin ligase for ITF2 ubiquitination. Intestinal epithelial-specific deletion of ITF2 facilitated nuclear translocation of p65 and thus increased colitis-associated cancer tumorigenesis, which was mediated by Azoxymethane/Dextran sulfate sodium or dextran sulfate sodium. Upregulated ITF2 expression was lost in carcinoma tissues of colitis-associated cancer patients, whereas p65 expression much more increased in both dysplastic and carcinoma regions. Therefore, these findings indicate a critical role for ITF2 in the repression of colitis-associated cancer progression and ITF2 would be an attractive target against inflammatory diseases including colitis-associated cancer.
Collapse
Affiliation(s)
- Mingyu Lee
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, USA
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Yi-Sook Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Suha Lim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Hyun Shin
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., 550 Dongtangiheung-ro, Hwaseong-si, 18469, Gyeonggi-do, South Korea
| | - Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Incheon, South Korea
| | - Jiyoung Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Min Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong-Joon Koh
- Liver Research Institute and Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun-Woo Shin
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea.
- Sensory Organ Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
Ge L, Zhao G, Lan C, Song H, Qi D, Huang P, Ke X, Cui H. MESP2 binds competitively to TCF4 to suppress gastric cancer progression by regulating the SKP2/p27 axis. Cell Death Discov 2023; 9:79. [PMID: 36854722 PMCID: PMC9975210 DOI: 10.1038/s41420-023-01367-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Gastric cancer (GC) is a major cause of human deaths worldwide, and is notorious for its high incidence and mortality rates. Mesoderm Posterior Basic Helix-loop-helix (bHLH) transcription factor 2 (MESP2) acts as a transcription factor with a conserved bHLH domain. However, whether MESP2 contributes to tumorigenesis and its potential molecular mechanisms, remain unexplored. Noticeably, MESP2 expression levels are decreased in GC tissues and cell lines compared to those in normal tissue. Further, in vitro and in vivo experiments have confirmed that MESP2 overexpression suppresses GC cell growth, migration, and invasion, whereas MESP2 knockdown results in the exact opposite. Here, we present the first report that MESP2 binds to transcription factor 7-like 2 (TCF7L2/TCF4) to inhibit the activation of the TCF4/beta-catenin transcriptional complex, decrease the occupancy of the complex on the S-phase kinase Associated Protein 2 (SKP2) promoter, and promote p27 accumulation. MESP2 knockdown facilitated tumorigenesis, which was partially suppressed by SKP2 knockdown. Taken together, we conclude that MESP2 binds competitively to TCF4 to suppress GC progression by regulating the SKP2/p27 axis, thus offering a potential therapeutic strategy for future treatment.
Collapse
Affiliation(s)
- Lingjun Ge
- grid.263906.80000 0001 0362 4044State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Gaichao Zhao
- grid.263906.80000 0001 0362 4044State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Chao Lan
- grid.263906.80000 0001 0362 4044State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Houji Song
- grid.263906.80000 0001 0362 4044Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716 China
| | - Dan Qi
- grid.263906.80000 0001 0362 4044Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716 China
| | - Pan Huang
- grid.263906.80000 0001 0362 4044State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
7
|
Polygonum cuspidatum Extract (Pc-Ex) Containing Emodin Suppresses Lung Cancer-Induced Cachexia by Suppressing TCF4/TWIST1 Complex-Induced PTHrP Expression. Nutrients 2022; 14:nu14071508. [PMID: 35406121 PMCID: PMC9002362 DOI: 10.3390/nu14071508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
Cachexia, which is characterised by the wasting of fat and skeletal muscles, is the most common risk factor for increased mortality rates among patients with advanced lung cancer. PTHLH (parathyroid hormone-like hormone) is reported to be involved in the pathogenesis of cancer cachexia. However, the molecular mechanisms underlying the regulation of PTHLH expression and the inhibitors of PTHLH have not yet been identified. The PTHLH mRNA levels were measured using quantitative real-time polymerase chain reaction, while the PTHrP (parathyroid hormone-related protein) expression levels were measured using Western blotting and enzyme-linked immunosorbent assay. The interaction between TCF4 (Transcription Factor 4) and TWIST1 and the binding of the TCF4–TWIST1 complex to the PTHLH promoter were analysed using co-immunoprecipitation and chromatin immunoprecipitation. The results of the mammalian two-hybrid luciferase assay revealed that emodin inhibited TCF4–TWIST1 interaction. The effects of Polygonum cuspidatum extract (Pc-Ex), which contains emodin, on cachexia were investigated in vivo using A549 tumour-bearing mice. Ectopic expression of TCF4 upregulated PTHLH expression. Conversely, TCF4 knockdown downregulated PTHLH expression in lung cancer cells. The expression of PTHLH was upregulated in cells ectopically co-expressing TCF4 and TWIST1 when compared with that in cells expressing TCF4 or TWIST1 alone. Emodin inhibited the interaction between TCF4 and TWIST1 and consequently suppressed the TCF4/TWIST1 complex-induced upregulated mRNA and protein levels of PTHLH and PTHrP. Meanwhile, emodin-containing Pc-Ex significantly alleviated skeletal muscle atrophy and downregulated fat browning-related genes in A549 tumour-bearing mice. Emodin-containing Pc-Ex exerted therapeutic effects on lung cancer-associated cachexia by inhibiting TCF4/TWIST1 complex-induced PTHrP expression.
Collapse
|
8
|
Alizadeh M, Schledwitz A, Cheng K, Raufman JP. Mechanistic Clues Provided by Concurrent Changes in the Expression of Genes Encoding the M 1 Muscarinic Receptor, β-Catenin Signaling Proteins, and Downstream Targets in Adenocarcinomas of the Colon. Front Physiol 2022; 13:857563. [PMID: 35370785 PMCID: PMC8966224 DOI: 10.3389/fphys.2022.857563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Muscarinic receptors (MRs) in the G protein-coupled receptor superfamily are recipients and mediators of parasympathetic neural transmission within the central and enteric nervous systems. MR subtypes, M1R-M5R, encoded by CHRM1-CHRM5, expressed widely throughout the gastrointestinal (GI) tract, modulate a range of critical, highly regulated activities in healthy tissue, including secretion, motility, and cellular renewal. CHRM3/M3R overexpression in colon cancer is associated with increased cell proliferation, metastasis, and a worse outcome, but little is known about the role of the other four muscarinic receptor subtypes. To address this gap in knowledge, we queried the NCI Genomic Data Commons for publicly available TCGA-COAD samples collected from colon tissue. RNA-seq data were collected and processed for all available primary adenocarcinomas paired with adjacent normal colon. In this unbiased analysis, 78 paired samples were assessed using correlation coefficients and univariate linear regressions; gene ontologies were performed on a subset of correlated genes. We detected a consistent pattern of CHRM1 downregulation across colorectal adenocarcinomas. CHRM1 expression levels were positively associated with those for APC and SMAD4, and negatively associated with CTNNB1, the gene for β-catenin, and with coordinate changes in the expression of β-catenin target genes. These findings implicating CHRM1/M1R as an important deterrent of colon cancer development and progression warrant further exploration.
Collapse
Affiliation(s)
- Madeline Alizadeh
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States,The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alyssa Schledwitz
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States,VA Maryland Healthcare System, Baltimore, MD, United States,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Jean-Pierre Raufman,
| |
Collapse
|
9
|
PGC1α Loss Promotes Lung Cancer Metastasis through Epithelial-Mesenchymal Transition. Cancers (Basel) 2021; 13:cancers13081772. [PMID: 33917757 PMCID: PMC8068195 DOI: 10.3390/cancers13081772] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
PGC1α oppositely regulates cancer metastasis in melanoma, breast, and pancreatic cancer; however, little is known about its impact on lung cancer metastasis. Transcriptome and in vivo xenograft analysis show that a decreased PGC1α correlates with the epithelial-mesenchymal transition (EMT) and lung cancer metastasis. The deletion of a single Pgc1α allele in mice promotes bone metastasis of KrasG12D-driven lung cancer. Mechanistically, PGC1α predominantly activates ID1 expression, which interferes with TCF4-TWIST1 cooperation during EMT. Bioinformatic and clinical studies have shown that PGC1α and ID1 are downregulated in lung cancer, and correlate with a poor survival rate. Our study indicates that TCF4-TWIST1-mediated EMT, which is regulated by the PGC1α-ID1 transcriptional axis, is a potential diagnostic and therapeutic target for metastatic lung cancer.
Collapse
|
10
|
Wan D, Qu Y, Ai S, Cheng L. miR-152 Attenuates Apoptosis in Chondrocytes and Degeneration of Cartilages in Osteoarthritis Rats via TCF-4 Pathway. Dose Response 2020; 18:1559325820946918. [PMID: 33192200 PMCID: PMC7597564 DOI: 10.1177/1559325820946918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Osteoarthritis (OA) is associated with deregulation of various miRNAs (miRs). The present study reported protective effect of miR-152 in osteoarthritis. Methods Tissue cartilage tissues of OA and normal subjects were used, rat model of anterior cruciate ligament transection (ACLT) was developed. Cartilage study was done by Safranin O-fast green, histological and immunostaining. The chondrocytes were isolated from tissues and were treated with IL-1β and infected with miR-152 or TCF-4 cloned lentiviral vectors. MTT assay was done for cell viability, apoptosis by Annexin-V-FITC staining. Expressions of proteins by western blot assay. Collagen-II assay was done by immunofluroscent assay. Luciferase activity by dual luciferase reporter assay. Results Upregulation of miR-152 improved viability of chondrocytes, decreased apoptosis and balanced the catabolic and anabolic factors of extracellular matrix in vitro. Injecting miR-152 lentivirus in rats improved articular cartilage in osteoarthritis ACLT rats. Bioinformatics analysis suggested TCF-4 as favorable target gene of miR-152, having binding site on the 3'UTR region of TCF-4 mRNA and inhibited the expression of TCF-4. Osteoarthritis tissue cartilage both from humans and rats showed expression of miR-152 inversely linked with expression of TCF-4. Conclusion Present study concludes miR-152 diminished the progression of osteoarthritis partially by inhibiting the expression of TCF-4.
Collapse
Affiliation(s)
- Daqian Wan
- Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, China
| | - Yang Qu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songtao Ai
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liming Cheng
- Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Shanghai, China
| |
Collapse
|
11
|
Mohamed MS, Hazawa M, Kobayashi A, Guillaud L, Watanabe-Nakayama T, Nakayama M, Wang H, Kodera N, Oshima M, Ando T, Wong RW. Spatiotemporally tracking of nano-biofilaments inside the nuclear pore complex core. Biomaterials 2020; 256:120198. [DOI: 10.1016/j.biomaterials.2020.120198] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
|
12
|
Cinobufagin Suppresses Melanoma Cell Growth by Inhibiting LEF1. Int J Mol Sci 2020; 21:ijms21186706. [PMID: 32933177 PMCID: PMC7554883 DOI: 10.3390/ijms21186706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Constitutive activation of the β-catenin dependent canonical Wnt signaling pathway, which enhances tumor growth and progression in multiple types of cancer, is commonly observed in melanoma. LEF1 activates β-catenin/TCF4 transcriptional activity, promoting tumor growth and progression. Although several reports have shown that LEF1 is highly expressed in melanoma, the functional role of LEF1 in melanoma growth is not fully understood. While A375, A2058, and G361 melanoma cells exhibit abnormally high LEF1 expression, lung cancer cells express lower LEF1 levels. A luciferase assay-based high throughput screening (HTS) with a natural compound library showed that cinobufagin suppressed β-catenin/TCF4 transcriptional activity by inhibiting LEF1 expression. Cinobufagin decreases LEF1 expression in a dose-dependent manner and Wnt/β-catenin target genes such as Axin-2, cyclin D1, and c-Myc in melanoma cell lines. Cinobufagin sensitively attenuates cell viability and induces apoptosis in LEF1 expressing melanoma cells compared to LEF1-low expressing lung cancer cells. In addition, ectopic LEF1 expression is sufficient to attenuate cinobufagin-induced apoptosis and cell growth retardation in melanoma cells. Thus, we suggest that cinobufagin is a potential anti-melanoma drug that suppresses tumor-promoting Wnt/β-catenin signaling via LEF1 inhibition.
Collapse
|
13
|
Weng J, Li S, Lin H, Mei H, Liu Y, Xiao C, Zhu Z, Cai W, Ding X, Mi Y, Wen Y. PCDHGA9 represses epithelial-mesenchymal transition and metastatic potential in gastric cancer cells by reducing β-catenin transcriptional activity. Cell Death Dis 2020; 11:206. [PMID: 32231199 PMCID: PMC7105466 DOI: 10.1038/s41419-020-2398-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) has a high mortality rate, and metastasis is the main reason for treatment failure. It is important to study the mechanism of tumour invasion and metastasis based on the regulation of key genes. In a previous study comparing the expression differences between GES-1 and SGC-7901 cells, PCDHGA9 was selected for further research. In vitro and in vivo experiments showed that PCDHGA9 inhibited invasion and metastasis. A cluster analysis suggested that PCDHGA9 inhibited epithelial-mesenchymal transition (EMT) through the Wnt/β-catenin and TGF-β pathways. Laser confocal techniques and western blotting revealed that PCDHGA9 inhibited the nuclear translocation of β-catenin, regulated T cell factor (TCF)/ /lymphoid enhancer factor (LEF) transcriptional activity, directly impacted the signal transmission of the TGF-β/Smad2/3 pathway, strengthened the adhesion complex, weakened the effects of TGF-β, and blocked the activation of the Wnt pathway. In addition, PCDHGA9 expression was regulated by methylation, which was closely related to poor clinical prognosis. The aim of this study was to elucidate the molecular mechanism by which PCDHGA9 inhibits EMT and metastasis in GC to provide a new theoretical basis for identifying GC metastasis and a new target for improving the outcome of metastatic GC.
Collapse
Affiliation(s)
- Junyong Weng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, 200003, Shanghai, China
| | - Shanbao Li
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, 201800, Shanghai, China
| | - Hao Lin
- Department of Medicine II, University Hospital, Liver Centre Munich, LMU, Munich, 80539, Germany
| | - Haitao Mei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Yang Liu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of General Surgery, Shanghai Huashan Hospital, Fudan University, 200000, Shanghai, China
| | - Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.,Department of General Surgery, Henan Provincial People's Hospital, 450003, Zhengzhou, Henan, China
| | - Weiwei Cai
- Department of Medicine, The Third Hospital of Quanzhou, 362000, Quanzhou, China
| | - Xusheng Ding
- Department of Gastrointestinal Surgery, Changzheng Hospital, Second Military Medical University, 200003, Shanghai, China
| | - Yushuai Mi
- Department of General Surgery, The Second Hospital of Shandong University, 250033, Jinan, Shandong, China.
| | - Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 200080, Shanghai, China.
| |
Collapse
|
14
|
A Novel Role for the Tumor Suppressor Gene ITF2 in Tumorigenesis and Chemotherapy Response. Cancers (Basel) 2020; 12:cancers12040786. [PMID: 32224864 PMCID: PMC7226299 DOI: 10.3390/cancers12040786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Despite often leading to platinum resistance, platinum-based chemotherapy continues to be the standard treatment for many epithelial tumors. In this study we analyzed and validated the cytogenetic alterations that arise after treatment in four lung and ovarian paired cisplatin-sensitive/resistant cell lines by 1-million microarray-based comparative genomic hybridization (array-CGH) and qRT-PCR methodologies. RNA-sequencing, functional transfection assays, and gene-pathway activity analysis were used to identify genes with a potential role in the development of this malignancy. The results were further explored in 55 lung and ovarian primary tumors and control samples, and in two extensive in silico databases. Long-term cell exposure to platinum induces the frequent deletion of ITF2 gene. Its expression re-sensitized tumor cells to platinum and recovered the levels of Wnt/β-catenin transcriptional activity. ITF2 expression was also frequently downregulated in epithelial tumors, predicting a worse overall survival. We also identified an inverse correlation between ITF2 and HOXD9 expression, revealing that Non-small cell lung cancer (NSCLC) patients with lower expression of HOXD9 had a better overall survival rate. We defined the implication of ITF2 as a molecular mechanism behind the development of cisplatin resistance probably through the activation of the Wnt-signaling pathway. This data highlights the possible role of ITF2 and HOXD9 as novel therapeutic targets for platinum resistant tumors.
Collapse
|
15
|
Koh SJ, Kim JW, Kim BG, Lee KL, Kim DW, Kim JS. Matricellular protein periostin promotes colitis-associated colon tumorigenesis in mice. Carcinogenesis 2019; 40:102-111. [PMID: 30204842 DOI: 10.1093/carcin/bgy120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
Periostin is expressed in inflamed colonic mucosa and colon cancer tissue; however, its role in the development of colitis-associated colon cancer (CAC) remains unclear. Wild-type and periostin-deficient (Postn-/-) mice were given a single intraperitoneal injection of azoxymethane at 12.5 mg/kg on day 0. Seven days later, 2% dextran sulfate sodium (DSS) was administered via drinking water for 5 days, followed by untreated, free water consumption for 16 days. This cycle was repeated three times. In vitro assays were performed using COLO205 and HCT116 cells. Small interfering RNA was used to inhibit Postn gene translation. Periostin expression was determined using colon samples from patients with CAC. Postn-/- mice exhibited lower tumor burden compared with wild-type mice. Exposure to azoxymethane/DSS resulted in extensive epithelial apoptosis in Postn-/- mice compared with that in wild-type mice. In addition, immunoreactivity for IκB kinase, β-catenin and COX2 was markedly reduced in Postn-/- mice. Expression of interleukin (IL)-1β and tumor necrosis factor α (TNF-α) significantly decreased, whereas that of IL-10 and transforming growth factor β (TGF-β) increased in peritoneal macrophages isolated from Postn-/- mice. Silencing of the Postn gene resulted in reduced cell viability, which was associated with caspase-3 activation, and this was reversed by treatment with recombinant periostin. Knockdown of Postn downregulated bcl-2, cIAP1, cFLIP-L, VEGF, Axin 2 and cyclin D1, and upregulated bak expression. Periostin expression was significantly increased in patients with CAC. Periostin aggravates CAC development, which suggests that periostin is a potential therapeutic target for the prevention of CAC in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Seong-Joon Koh
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Won Kim
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong Gwan Kim
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Xue H, Tu Y, Ma T, Wen T, Yang T, Xue L, Cai M, Wang F, Guan M. miR-93-5p attenuates IL-1β-induced chondrocyte apoptosis and cartilage degradation in osteoarthritis partially by targeting TCF4. Bone 2019; 123:129-136. [PMID: 30930294 DOI: 10.1016/j.bone.2019.03.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs, miRs) are frequently dysregulated in osteoarthritis (OA), but the role of specific miRNAs in OA remains unclear. In this study, we found that miR-93-5p is underexpressed in human and rat OA-affected cartilage (compared with normal cartilage) as well as in IL-1β-treated chondrocytes. Overexpression of miR-93-5p promoted chondrocyte viability, suppressed chondrocyte apoptosis, and maintained the balance between anabolic and catabolic factors of the extracellular matrix in vitro. Similarly, injection of a miR-93-5p-expressing lentivirus alleviated the destruction of articular cartilage in a rat model of OA (anterior cruciate ligament transection). Furthermore, TCF4 was identified as a direct target gene of miR-93-5p. miR-93-5p directly targeted the 3' untranslated region (3'-UTR) of TCF4 mRNA and repressed TCF4 expression. Overexpression of TCF4 attenuated the effects of miR-93-5p on chondrocyte apoptosis and functions. Finally, analyses of miR-93-5p and TCF4 in OA-affected cartilage tissues revealed that miR-93-5p expression inversely correlated with TCF4 expression. Altogether, these findings indicate that miR-93-5p slows OA progression partially by suppressing TCF4 expression, and this phenomenon may provide novel insights into the function of miRNA in OA.
Collapse
Affiliation(s)
- Huaming Xue
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Yihui Tu
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China.
| | - Tong Ma
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Tao Wen
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Tao Yang
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Long Xue
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Minwei Cai
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Fangxing Wang
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| | - Mengying Guan
- Department of Orthopaedics, Yangpu District Central Hospital affiliated to Tongji University School of Medicine, Shanghai 200090, China
| |
Collapse
|
17
|
Chen Z, Soutto M, Rahman B, Fazili MW, Peng D, Blanca Piazuelo M, Chen H, Kay Washington M, Shyr Y, El-Rifai W. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia. Genes Chromosomes Cancer 2017; 56:535-547. [PMID: 28281307 DOI: 10.1002/gcc.22456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Mohammed Soutto
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Bushra Rahman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Muhammad W Fazili
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - DunFa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Maria Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Heidi Chen
- Center of Quantitative Sciences, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - Yu Shyr
- Center of Quantitative Sciences, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - Wael El-Rifai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| |
Collapse
|
18
|
Liu X, Huang Y, Zhang Y, Li X, Liu C, Huang S, Xu D, Wu Y, Liu X. T-cell factor (TCF/LEF1) binding elements (TBEs) of FasL (Fas ligand or CD95 ligand) bind and cluster Fas (CD95) and form complexes with the TCF-4 and b-catenin transcription factors in vitro and in vivo which result in triggering cell death and/or cell activation. Cell Mol Neurobiol 2016; 36:1001-1013. [PMID: 27090258 DOI: 10.1007/s10571-015-0290-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023]
Abstract
T-cell factor 4 (TCF4) is an important transcription factor of the Wnt signaling system. β-catenin, an upstream protein of TCF4, accumulates in the cytoplasm, then translocates to the nucleus to activate the β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional machinery and regulates target genes. Previous studies showed that TCF4 was involved in cell proliferation and apoptosis. However, its expression and function in central nervous system injury are unclear. We performed a traumatic brain injury (TBI) model in adult rats. The expression of TCF4 in the brain cortex detected by Western blot increased after TBI. Double immunofluorescence staining revealed that TCF4 was expressed by neurons and microglia. In addition, co-localization of TCF4 with active caspase-3 or proliferating cell nuclear antigen was observed in neurons and microglia, respectively, suggesting that TCF4 might participate in neuronal apoptosis and microglial proliferation after TBI. To further investigate the functions of TCF4, PC12 and HAPI cells were employed to establish a neuronal apoptosis and microglial proliferation model in vitro, respectively. Knocking down TCF4 with siRNA proved the pro-apoptotic and pro-proliferation effect of TCF4 in PC12 and HAPI cells, respectively. Taken together, TCF4 might promote neuronal apoptosis and microglial proliferation after TBI.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathophysiology, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuwei Huang
- Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuanyuan Zhang
- Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xiaohong Li
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Chun Liu
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Shen Huang
- Department of Osteology, The Second Affiliated Hospital, Nantong University, Nantong, 226001, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Dezhi Xu
- Department of Neurosurgery, Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214002, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yang Wu
- Institute of Nautical Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
19
|
Li J, Yang X, Guan H, Mizokami A, Keller ET, Xu X, Liu X, Tan J, Hu L, Lu Y, Zhang J. Exosome-derived microRNAs contribute to prostate cancer chemoresistance. Int J Oncol 2016; 49:838-46. [PMID: 27278879 DOI: 10.3892/ijo.2016.3560] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Certain microRNAs (miRNAs) play a key role in cancer cell chemoresistance. However, the pleiotropic functions of exosome-derived miRNAs on developing chemoresistance remain unknown. In the present study, we aimed to construct potential networks of miRNAs, which derived from the exosome of chemoresistant prostate cancer (PCa) cells, with their known target genes using miRNA expression profiling and bioinformatic tools. Global miRNA expression profiles were measured by microarray. Twelve miRNAs were initially selected and validated by qRT-PCR. Known targets of deregulated miRNAs were utilized using DIANA-TarBase database v6.0. The incorporation of deregulated miRNAs and target genes into KEGG pathways were utilized using DIANA-mirPath software. To construct potential miRNA regulatory networks, the overlapping parts of miRNAs and their targer genes from the selected KEGG pathway 'PCa progression (hsa05215)' were visualized by Cytoscape software. We identified 29 deregulated miRNAs, including 19 upregulated and 10 downregulated, in exosome samples derived from two kinds of paclitaxel resistance PCa cells (PC3-TXR and DU145-TXR) compared with their parental cells (PC3 and DU145). The enrichment results of deregulated miRNAs and known target genes showed that a few pathways were correlated with several critical cell signaling pathways. We found that hub hsa-miR3176, -141-3p, -5004-5p, -16-5p, -3915, -488‑3p, -23c, -3673 and -3654 were potential targets to hub gene androgen receptor (AR) and phosphatase and tensin homolog (PTEN). Hub gene T-cell factors/lymphoid enhancer-binding factors 4 (TCF4) target genes were mainly regulated by hub hsa-miR-32-5, -141-3p, -606, -381 and -429. These results may provide a linkage between PCa chemoresistance and exosome regulatory networks and thus lead us to propose that AR, PTEN and TCF4 genes may be the important genes which are regulated by exosome miRNAs in chemoresistance cancer cells.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| | - Xin Yang
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| | - Hao Guan
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| | | | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xiaozhen Xu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| | - Xia Liu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| | - Jiyong Tan
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| | - Longyuan Hu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| | - Yi Lu
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| | - Jian Zhang
- Key Laboratory of Longevity and Aging-Related Diseases, Ministry of Education, Nanning, Guangxi, P.R. China
| |
Collapse
|
20
|
Li R, Li Y, Hu X, Lian H, Wang L, Fu H. Transcription factor 3 controls cell proliferation and migration in glioblastoma multiforme cell lines. Biochem Cell Biol 2016; 94:247-55. [PMID: 27105323 DOI: 10.1139/bcb-2015-0162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcription factor 3 (TCF3) is a member of the T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factor family. Recent studies have demonstrated its potential carcinogenic properties. Here we show that TCF3 was upregulated in glioma tissues compared with normal brain tissues. This upregulation of the TCF3 gene probably has functional significance in brain-tumor progression. Our studies on glioblastoma multiforme (GBM) cell lines show that knock-down of TCF3 induced apoptosis and inhibited cell migration. Further analysis revealed that down-regulation of TCF3 gene expression inhibits Akt and Erk1/2 activation, suggesting that the carcinogenic properties of TCF3 in GBM are partially mediated by the phosphatidylinositol 3-kinase-Akt and MAPK-Erk signaling pathways. Considered together, the results of this study demonstrate that high levels of TCF3 in gliomas potentially promote glioma development through the Akt and Erk pathways.
Collapse
Affiliation(s)
- Ruiting Li
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| | - Yinghui Li
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| | - Xin Hu
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| | - Haiwei Lian
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| | - Lei Wang
- b Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hui Fu
- a Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei, China
| |
Collapse
|
21
|
Lv JH, Wang F, Shen MH, Wang X, Zhou XJ. SATB1 expression is correlated with β-catenin associated epithelial-mesenchymal transition in colorectal cancer. Cancer Biol Ther 2016; 17:254-61. [PMID: 26810818 DOI: 10.1080/15384047.2016.1139239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SATB1, a global gene regulator, has been implicated in the growth and metastasis of multiple cancers, including colorectal cancer. While the understanding about the role of SATB1 in CRC remains limited. The aim of our study is to investigate the expression of SATB1 in CRC, and the relationship between SATB1 expression pattern and clinicopathological variables. A further aim is to analyze the correlation between SATB1 expression and epithelial-mesenchymal transition in CRC. Immunohistochemical expression of SATB1, β-catenin, E-cadherin, CK20, Vimentin, SMA, and desmin were assessed in a cohort of 200 patients using tissue microarrays. SATB1 was expressed in 133 (66.5%) CRC primary lesions, 14 (28%) adjacent colorectal mucosa specimens, and 60 (75%) corresponding lymph node metastases. The expression level of SATB1 was significantly higher in lymph node metastases than in CRC primary lesions and normal mucosa (P = 0.000). High expression of SATB1 in CRC was strongly correlated with poor differentiation of tumor tissues (P = 0.000). High expression of SATB1 was significantly correlated with aberrant expression of β-catenin (P = 0.0005), low expression of E-cadherin (P = 0.000) and CK20 (P = 0.000) and with high expression of Vimentin (P = 0.001). No SMA or desmin protein was expressed in the CRC cells. Our results suggested that high expression of SATB1 is significantly correlated with poor differentiation of CRC. SATB1 might promote the epithelial-mesenchymal transition by increasing the aberrant expression of β-catenin.
Collapse
Affiliation(s)
- Jing-huan Lv
- a Department of Pathology , Jinling Hospital, Medical School of Nanjing University , Nanjing , China.,b Department of Pathology , the Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Feng Wang
- b Department of Pathology , the Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Ming-hong Shen
- b Department of Pathology , the Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Xuan Wang
- a Department of Pathology , Jinling Hospital, Medical School of Nanjing University , Nanjing , China
| | - Xiao-jun Zhou
- a Department of Pathology , Jinling Hospital, Medical School of Nanjing University , Nanjing , China
| |
Collapse
|