1
|
Chauhan R, Mohan M, Mannan A, Devi S, Singh TG. Unravelling the role of Interleukin-12 in Neuroinflammatory mechanisms: Pathogenic pathways linking Neuroinflammation to neuropsychiatric disorders. Int Immunopharmacol 2025; 156:114654. [PMID: 40294470 DOI: 10.1016/j.intimp.2025.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Neuropsychiatric disorders are clinically characterized conditions involving both neurology and psychiatry, arising from dysfunctioning of cerebral function, or indirect effects of extra cerebral disease. Neuropsychiatric disorders tend to influence emotions, mood, and brain functioning. Growing evidence indicates that the etiology of these disorders is not confined to neuronal abnormalities but extends to include inflammation. While the underlying mechanism of these disorders is still in its infancy, recent data highlights the significant role of neuroinflammation in their pathophysiology. Neuroinflammation concerns the inflammation within the neural tissue characterized by alteration in astrocytes, cytokines, microglia, and chemokines within the central nervous system. The cytokines include IFN-γ, IL-1β, IL-2, IL4, IL-6, IL-8, IL-10, and IL-12. This review focuses on interleukin-12 (IL-12), a key mediator of neuroinflammation, and its potential involvement in neuropsychiatric disorders. IL-12 promotes neuroinflammation and influences neurotransmitter systems. Additionally, it also affects the HPA axis, impairs neuroplasticity, and activates microglia by interacting with TLR, JAK-STAT, PI3K/Akt, GSK-3, NMDA, MAPK, PKC, VEGFR, ROCK, and Wnt signaling pathways and elicit its role in ND. In this review, we dwell on the current evidence supporting IL-12's pathogenic role and explore the possible mechanisms by which it contributes to the development and progression of these conditions. This review aims to provide insights that may aid in future therapeutic strategies by illuminating the interplay between neuroinflammation and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rupali Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Liang Z, Li S, Wang Z, Zhou J, Huang Z, Li J, Bao H, Yam JWP, Xu Y. Unraveling the Role of the Wnt Pathway in Hepatocellular Carcinoma: From Molecular Mechanisms to Therapeutic Implications. J Clin Transl Hepatol 2025; 13:315-326. [PMID: 40206274 PMCID: PMC11976435 DOI: 10.14218/jcth.2024.00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 04/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors in the world, and its incidence and mortality have increased year by year. HCC research has increasingly focused on understanding its pathogenesis and developing treatments.The Wnt signaling pathway, a complex and evolutionarily conserved signal transduction system, has been extensively studied in the genesis and treatment of several malignant tumors. Recent investigations suggest that the pathogenesis of HCC may be significantly influenced by dysregulated Wnt/β-catenin signaling. This article aimed to examine the pathway that controls Wnt signaling in HCC and its mechanisms. In addition, we highlighted the role of this pathway in HCC etiology and targeted treatment.
Collapse
Affiliation(s)
- Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shanshan Li
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyu Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junting Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiehan Li
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Runtian Z, Wenqiang H, Zimeng S, Tianyu W, Jingquan Z. AEBP1 or ACLP, which is the key factor in inflammation and fibrosis? Int J Biol Macromol 2025; 310:143554. [PMID: 40294683 DOI: 10.1016/j.ijbiomac.2025.143554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Adipocyte enhancer-binding protein 1 (AEBP1) and Aortic carboxypeptidase-like protein (ACLP) are two protein isoforms produced by the AEBP1 gene. AEBP1, originally discovered in preadipocytes, functions as a transcriptional repressor and is involved in promoting inflammation, proliferation, and migration through various signaling pathways. ACLP is an extracellular matrix protein linked to Ehlers-Danlos syndrome, a genetic disorder characterized by defective connective tissue development. Structurally, AEBP1 and ACLP share many similarities, and both participate in critical physiological or pathological processes, such as cancer and fibrosis, by influencing pathways like NK-κB, WNT, and TGF-β. In recent years, research on AEBP1 and ACLP has expanded to include major organs such as the brain, kidneys, and lungs, with a particular focus on the cardiovascular system, where they show potential as novel drug targets. However, most studies do not clearly distinguish between AEBP1 and ACLP. For instance, AEBP1 is implicated in myocardial fibrosis in hypertrophic cardiomyopathy models, whereas ACLP is associated with fibrosis in other organs. Additionally, literature on the relationship between AEBP1 and fibrosis is often contradictory. Clarifying the distinct roles of AEBP1 and ACLP and their different functions in various cell types would greatly benefit further research. Current research suggests that the AEBP1 gene encodes two proteins, AEBP1 and ACLP, which have been reported to exhibit distinct functions in different studies. However, many studies do not differentiate between these two proteins, potentially leading to misconceptions. Therefore, we have conducted a comprehensive review of the existing literature to elucidate the functions of the AEBP1 gene and its encoded proteins in detail.
Collapse
Affiliation(s)
- Zhang Runtian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Han Wenqiang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shen Zimeng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wang Tianyu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhong Jingquan
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, China.
| |
Collapse
|
4
|
Wang J, Liao J, Cheng Y, Chen M, Huang A. LAPTM4B enhances the stemness of CD133 + liver cancer stem-like cells via WNT/β-catenin signaling. JHEP Rep 2025; 7:101306. [PMID: 40171299 PMCID: PMC11960653 DOI: 10.1016/j.jhepr.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 04/03/2025] Open
Abstract
Background & Aims Lysosome-associated protein transmembrane 4β (LAPTM4B) is an oncogene implicated in the malignant progression of hepatocellular carcinoma (HCC). Previous research established a strong association between LAPTM4B and HCC stemness. However, specific mechanisms by which LAPTM4B regulates and maintains the stemness of liver cancer stem cells remain unclear. Therefore, we investigated the effects of LAPTM4B on the stemness regulation of cluster of differentiation 133 (CD133)+ liver cancer stem-like cells (CSLCs). Methods We used RNA interference and overexpression techniques in both in vitro and in vivo models. The involvement of LAPTM4B in wingless/integrated (WNT)/β-catenin signaling was examined through western blotting, immunofluorescence, and immunoprecipitation. The impact of LAPTM4B on β-catenin phosphorylation and ubiquitination was analyzed to elucidate its role in promoting stemness. Clinical relevance was evaluated in an in-house cohort of 105 specimens from patients with HCC through immunohistochemical and microarray analysis, enabling investigation of correlations with clinical outcomes. Results LAPTM4B promoted the self-renewal ability, chemoresistance, and tumorigenicity of CD133+ CSLCs. Mechanistically, aberrant LAPTM4B upregulation facilitated β-catenin nuclear translocation (nucleocytoplasmic separation assay, p <0.001) and inhibited its phosphorylation (p <0.01). In addition, LAPTM4B interacts with the deubiquitinating enzymes ubiquitin carboxyl-terminal hydrolase (USP)-1 and USP14, reducing β-catenin ubiquitination. Furthermore, patients with high LAPTM4B and β-catenin expression had markedly shorter 3-year overall survival rate (42.9% vs. 74.4%; hazard ratio, 5.174; 95% CI 2.280-11.741, p <0.001). Conclusions LAPTM4B promotes CD133+ CSLC stemness by activating WNT/β-catenin signaling by inhibiting β-catenin phosphorylation and ubiquitination degradation. The role of LAPTM4B in regulating WNT/β-catenin signaling suggests that LAPTM4B serves as a therapeutic target for impairing HCC stemness and progression. Impact and implications LAPTM4B contributes significantly to CD133+ CSLC stemness and inhibits β-catenin phosphorylation and ubiquitination degradation, activating WNT/β-catenin signaling. WNT inhibitors suppress LAPTM4B-induced CD133+ CSLC stemness. Thus, targeting the LAPTM4B-WNT/β-catenin axis could improve antitumor efficacy.
Collapse
Affiliation(s)
- Jiahong Wang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Jianping Liao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Ye Cheng
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Diagnostical Pathology Center, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Meirong Chen
- Department of Pathology, Quanzhou Maternity and Children’s Hospital, Quanzhou, Fujian 362000, China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
- Institute of Oncology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| |
Collapse
|
5
|
Wu Y, Yu J, Song H, Lu D, Li Z, Li X, Ding Z, Zhou L, Ma J, Zhang Y, Li Y. Profiling of RNA N6-Methyladenosine methylation reveals the critical role of m6A in betaine alleviating hepatic steatosis. Sci Rep 2025; 15:7298. [PMID: 40025137 PMCID: PMC11873031 DOI: 10.1038/s41598-025-91573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major predisposing factor of metabolic dysfunction-associated steatohepatitis, hepatic fibrosis and hepatocellular carcinoma. Abnormal RNA m6A modification leads to the disturbance of lipid metabolism, insulin resistance, and chronic inflammation, all of which are critical for the onset and progression of MASLD. It has been shown that betaine supplementation has an ameliorative effect on symptoms associated with MASLD. The purpose of this study is to explore the role of RNA m6A modification in the alleviation of MASLD by betaine, and to find out the possible targets of betaine. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were respectively employed to contrast m6A methylation profiles of livers from high-fat diet mice with betaine supplementation vs. those without betaine supplementation (HB vs. HFD). Functional enrichment analysis showed that up-methylated genes are mainly related to mTOR signaling pathway, Rap1 signaling pathway and MAPK signaling pathway. In addition, differentially expressed mRNAs were enriched in pathways such as promoting lipid catabolism and reducing lipid accumulation. By combining analyses of MeRIP-seq and RNA-seq, we identified 27 genes exhibiting significant differences in m6A abundance and mRNA levels. Notably, a new candidate gene, Trub2, was screened out and identified. Inhibition of Trub2 increased intracellular TG levels in AML12 cells, and this promotion was reduced by betaine, suggesting that betaine reduces intracellular TG levels by increasing Trub2 expression. Our findings in this study provide a new target and a new approach for the treatment of MASLD.
Collapse
Affiliation(s)
- Yuna Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jingsu Yu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Haisen Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Dehao Lu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhilin Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiangling Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhaoxuan Ding
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lei Zhou
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jie Ma
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ying Zhang
- School of Life Sciences, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
6
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Wang X, Wang XQ, Luo K, Bai H, Qi JL, Zhang GX. Research Progress of Chinese Medicine Monomers in Treatment of Cholangiocarcinoma. Chin J Integr Med 2025; 31:170-182. [PMID: 39470920 DOI: 10.1007/s11655-024-4203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 11/01/2024]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocytes. However, it remains unclear about the pathogenesis of this carcinoma, which may be related to multiple factors. Currently, CCA is mainly treated by surgery, chemotherapy, and radiotherapy. Among them, surgery is the only potentially curative option for CCA. Nevertheless, the high malignancy and asymptomatic nature of CCA may lead to poor treatment outcomes. It has been demonstrated that Chinese medicine (CM) plays a significant role in various antitumor applications. Meanwhile, CM exhibits fewer side effects and high availability. Moreover, the in vitro application of CM monomers has been explored in many domestic and foreign studies. This article mainly reviews the signaling pathways and molecular mechanisms of CM monomers in the treatment of CCA in recent years. These findings are expected to provide new insights into the treatment of CCA.
Collapse
Affiliation(s)
- Xiang Wang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Hepatobiliary Surgery Department, Shandong Provincial Third Hospittal, Shandong University, Jinan, 250031, China
| | - Xiao-Qing Wang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Kai Luo
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - He Bai
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
| | - Jia-Lin Qi
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116021, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Gui-Xin Zhang
- Department of General Surgery, the Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116027, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
8
|
Nian Q, Lin Y, Zeng J, Zhang Y, Liu R. Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy. Transl Oncol 2025; 52:102237. [PMID: 39672002 PMCID: PMC11700300 DOI: 10.1016/j.tranon.2024.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072.
| | - Yan Lin
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Yanna Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing, China, 400000.
| |
Collapse
|
9
|
Shi L, Zhang S, Liu G, Nie Z, Ding P, Chang W, Dai Y, Ma X. Toxin protein LukS-PV targeting complement receptor C5aR1 inhibits cell proliferation in hepatocellular carcinoma via the HDAC7-Wnt/β-catenin axis. J Biol Chem 2025; 301:108148. [PMID: 39736396 PMCID: PMC11910327 DOI: 10.1016/j.jbc.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant tumors. Complement system has become a new focus of cancer research by changing the biological behavior of cancer cells to influence the growth of cancer. Recent studies reported that the complement C5a-C5aR1 axis can promote the malignant phenotype of multiple tumors through various signaling pathways. LukS-PV (Panton-Valentine), the S component of Staphylococcus aureus-secreted PV leucocidin, can also bind C5aR1 specifically. This project aims to investigate the role of LukS-PV on HCC cell proliferation and explore underlying molecular mechanisms. Our findings revealed that LukS-PV targeting C5aR1 inhibited HCC cell proliferation in vitro and in vivo. Interestingly, we discovered that LukS-PV inhibited the proliferation of HCC cells by upregulating the acetylation level of β-catenin to promote its protein degradation. In addition, histone deacetylase (HDAC)7 identified as a regulator mediates the deacetylation of β-catenin. Furthermore, our results showed that LukS-PV inhibited proliferation in HCC cells by downregulating HDAC7 to promote the degradation of β-catenin through ubiquitin-proteasome system. Collectively, our findings revealed that LukS-PV targeting C5aR1 inhibits HCC cell proliferation through the HDAC7-Wnt/β-catenin axis. These results revealing a novel mechanism that LukS-PV as a bacterial toxin inhibits HCC cell proliferation through epigenetic remodeling by targeting complement receptor C5aR1, suggest the strong potential of LukS-PV as a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Lan Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanshan Zhang
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhengchao Nie
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Pengsheng Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjiao Chang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanyuan Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoling Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
10
|
Shi J, Zhu X, Yang JB. Advances and challenges in molecular understanding, early detection, and targeted treatment of liver cancer. World J Hepatol 2025; 17:102273. [PMID: 39871899 PMCID: PMC11736488 DOI: 10.4254/wjh.v17.i1.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
In this review, we explore the application of next-generation sequencing in liver cancer research, highlighting its potential in modern oncology. Liver cancer, particularly hepatocellular carcinoma, is driven by a complex interplay of genetic, epigenetic, and environmental factors. Key genetic alterations, such as mutations in TERT, TP53, and CTNNB1, alongside epigenetic modifications such as DNA methylation and histone remodeling, disrupt regulatory pathways and promote tumorigenesis. Environmental factors, including viral infections, alcohol consumption, and metabolic disorders such as nonalcoholic fatty liver disease, enhance hepatocarcinogenesis. The tumor microenvironment plays a pivotal role in liver cancer progression and therapy resistance, with immune cell infiltration, fibrosis, and angiogenesis supporting cancer cell survival. Advances in immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies have shown potential, but the unique immunosuppressive milieu in liver cancer presents challenges. Dysregulation in pathways such as Wnt/β-catenin underscores the need for targeted therapeutic strategies. Next-generation sequencing is accelerating the identification of genetic and epigenetic alterations, enabling more precise diagnosis and personalized treatment plans. A deeper understanding of these molecular mechanisms is essential for advancing early detection and developing effective therapies against liver cancer.
Collapse
Affiliation(s)
- Ji Shi
- Department of Research and Development, Ruibiotech Company Limited, Beijing 100101, China
| | - Xu Zhu
- Department of Research and Development, Ruibiotech Company Limited, Beijing 100101, China
| | - Jun-Bo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, Guangdong Province, China.
| |
Collapse
|
11
|
Close DA, Johnston PA. Miniaturization and characterization of patient derived hepatocellular carcinoma tumor organoid cultures for cancer drug discovery applications. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 30:100201. [PMID: 39662672 DOI: 10.1016/j.slasd.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Patient derived tumor organoid (PDTO) models retain the structural, morphological, genetic, and clonal heterogeneity of the original tumors. The ability to efficiently generate, expand, and biobank PDTOs has the potential to make the clinical diversity of cancer accessible for personalized medicine assay guided therapeutic drug selection and drug discovery. We describe the miniaturization and growth in 96- and 384-well formats of a single non-tumor liver and two Hepatocellular carcinoma (HCC) organoids derived from cryopreserved PDTO cells and the application of high content imaging (HCI) to characterize the models and enhance drug sensitivity testing. Non-invasive sequentially acquired transmitted light images showed that seeding cryopreserved cells from non-tumoral and HCC PDTOs into 96- or 384-well plates in reduced growth factor Matrigel (rgf-MG) that were fed with growth medium every 3 days supported organoid growth up to 15 days. The number and sizes of organoids increased with longer times in culture. HCC PDTO's had more heterogeneous morphologies than non-tumor organoids with respect to size, shape, and optical density. Organoids cultured in rgf-MG could be stained in situ with HCI reagents without mechanical, chemical or enzymatic disruption of the hydrogel matrices and quantitative data extracted by image analysis. Hoechst and live/dead reagents provided organoid numbers and viability comparisons. HCC PDTO's stained with phalloidin or immuno-stained with α-tubulin antibodies revealed F-actin and microtubule cytoskeleton organization. HCC PDTO's stained with antibodies to signaling pathway proteins and their phosphorylation status allowed comparisons of relative expression levels and inference of pathway activation. Images of HCC PDTO's exposed to ellipticine showed that drugs penetrate Matrigel hydrogels and accumulate in organoid cells. 9-day 384-well HCC organoid cultures exhibited robust and reproducible growth signals suitable for cancer drug testing. Complimenting cell viability readouts with multiple HCI parameters including morphological features and dead cell staining improved the analysis of drug impact and enhanced the value that could be extracted from these more physiologically relevant three-dimensional HCC organoid cultures.
Collapse
Affiliation(s)
- David A Close
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
12
|
Sethi S. Defining the Molecular Intricacies of Human Papillomavirus-Associated Tonsillar Carcinoma. Cancer Control 2025; 32:10732748241310932. [PMID: 40331509 DOI: 10.1177/10732748241310932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
BackgroundThe past decade has shown a sharp incline in the human papillomavirus (HPV) infection associated oropharyngeal carcinoma cases, especially in men younger than 60 years old. Tonsils are one of the key sites, within the oropharyngeal region, which shows malignant changes due to HPV infection, and there is very limited literature to understand the specific dynamics in the tonsillar areas.ObjectiveThis critical review was undertaken to explore and unravel the bio-molecular interactions and the role of specific proteins associated with HPV infection induced tumorigenesis for the tonsils.DesignA systematic search of the literature was performed utilising keywords and MeSH terms related to HPV and tonsillar carcinoma in PubMed, Scopus, Embase, and Web of Science without restrictions on dates until July 2023. All studies that reported on molecular biomarkers or genes/genetic proteins in the context of HPV associated tonsillar carcinoma were included in the study.ResultsPreliminary searches revealed a total of 2734 studies of which 23 satisfied the final inclusion criteria and were included. More than 25 proteins and biomarkers were identified, and their role in the malignant process was extracted and compiled. This review also presents a short excerpt on each of the molecules identified to provide a better understanding of the pathogenesis.ConclusionGiven the rapidly increasing number of cases, there is an urgent need for more focused research on virally induced tonsillar cancers, to develop a better understanding, and for clarity of management and treatment.
Collapse
Affiliation(s)
- Sneha Sethi
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
Zhao L, Tang H, Cheng Z. Pharmacotherapy of Liver Fibrosis and Hepatitis: Recent Advances. Pharmaceuticals (Basel) 2024; 17:1724. [PMID: 39770566 PMCID: PMC11677259 DOI: 10.3390/ph17121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a progressive scarring process primarily caused by chronic inflammation and injury, often closely associated with viral hepatitis, alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), drug-induced liver injury, and autoimmune liver disease (AILD). Currently, there are very few clinical antifibrotic drugs available, and effective targeted therapy is lacking. Recently, emerging antifibrotic drugs and immunomodulators have shown promising results in animal studies, and some have entered clinical research phases. This review aims to systematically review the molecular mechanisms underlying liver fibrosis, focusing on advancements in drug treatments for hepatic fibrosis. Furthermore, since liver fibrosis is a progression or endpoint of many diseases, it is crucial to address the etiological treatment and secondary prevention for liver fibrosis. We will also review the pharmacological treatments available for common hepatitis leading to liver fibrosis.
Collapse
Affiliation(s)
- Liangtao Zhao
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| | - Haolan Tang
- School of Medicine, Southeast University, Nanjing 210009, China;
| | - Zhangjun Cheng
- Hepato-Pancreato-Biliary Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China;
| |
Collapse
|
14
|
Ma S, Xie F, Wen X, Adzavon YM, Zhao R, Zhao J, Li H, Li Y, Liu J, Liu C, Yi Y, Zhao P, Wang B, Zhao W, Ma X. GSTA1/CTNNB1 axis facilitates sorafenib resistance via suppressing ferroptosis in hepatocellular carcinoma. Pharmacol Res 2024; 210:107490. [PMID: 39510148 DOI: 10.1016/j.phrs.2024.107490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The emergence of sorafenib resistance has become a predominant impediment and formidable dilemma in the therapeutic approach for hepatocellular carcinoma (HCC). Although the approval of next-generation drugs as alternatives to sorafenib is a significant development, the concurrent use of inhibitors that target additional key molecular pathways remains an effective strategy to mitigate the acquisition of resistance. Here, we identified Glutathione S-Transferase Alpha 1 (GSTA1) as a critical modulator of sorafenib resistance (SR) in hepatocellular carcinoma (HCC) based on our findings from experiments conducted on recurrent liver cancer tissues, xenograft mouse models, organoids, and sorafenib-resistant cells. Elevated GSTA1 levels are strongly associated with adverse clinical prognoses. The knockout of GSTA1 reinstates sorafenib sensitivity, whereas its overexpression attenuates drug efficacy. Mechanistically, GSTA1 enhances the accumulation of lipid peroxides and suppresses ferroptosis by exerting its peroxidase function to regulate the SR. Notably, the upregulation of GSTA1 expression is mediated by the transcription factor CTNNB1 (β-catenin), resulting in the formation of a cytoplasmic complex between GSTA1 and CTNNB1. This complex facilitates the nuclear translocation of CTNNB1, establishing a positive feedback loop. The combined use of GSTA1 and CTNNB1 inhibitors demonstrated synergistic anti-tumour effects through the induction of ferroptosis both in vitro and in vivo. Our findings reveal a novel regulatory role of the GSTA1/CTNNB1 axis in ferroptosis, suggesting that targeting GSTA1 and CTNNB1 could be a promising strategy to circumvent sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Shiwen Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China; Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fei Xie
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xiaohu Wen
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China; Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yao Mawulikplimi Adzavon
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Ruping Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Jinyi Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Han Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yanqi Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chen Liu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Yang Yi
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Pengxiang Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Boqing Wang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, China.
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research/Ministry of Education, Department of Clinical laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xuemei Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; Beijing Molecular Hydrogen Research Center, Beijing 100124, China.
| |
Collapse
|
15
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131:1871-1880. [PMID: 39261716 PMCID: PMC11628615 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
16
|
Shendge AK, Sekler I, Hershfinkel M. ZnR/GPR39 regulates hepatic insulin signaling, tunes liver bioenergetics and ROS production, and mitigates liver fibrosis and injury. Redox Biol 2024; 78:103403. [PMID: 39514940 PMCID: PMC11584770 DOI: 10.1016/j.redox.2024.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Adequate supply of zinc is essential for hepatic function and its deficiency is associated with acute liver injury (ALI) and chronic nonalcoholic fatty liver disease (NAFLD). However, how zinc controls hepatic function is unknown. We found that the zinc sensitive ZnR/GPR39, a mediator of zinc signaling, enhances hepatic phosphorylation of ERK1/2, which is reduced in ZnR/GPR39 deficient livers. Surprisingly, livers from ZnR/GPR39 knockout (KO) mice exhibited elevated insulin receptor expression and downstream AKT activation. Moreover, ZnR/GPR39 KO mice had higher blood fasting glucose level, pronounced hepatic lipid accumulation, increased hepatocyte oxygen consumption rate (OCR) and reactive oxygen species (ROS) levels. These data suggest that ZnR/GPR39 modulates insulin receptor signaling, a major pathway in hepatic metabolism. Associated with the impaired signaling, ZnR/GPR39 KO livers exhibited increased tissue fibrosis, manifested by marked elevation of collagen expression, compared to wildtype (WT). Additionally, we found alteration of hepatocyte junctional proteins that was accompanied by increased macrophage infiltration and higher liver inflammation in ZnR/GPR39 KO mice. To determine the role of ZnR/GPR39 in ALI, we applied a mild LPS challenge that induced profound decrease in hepatic OCR, also leading to higher ROS generation in ZnR/GPR39 KO hepatocytes, but not in WT. We further found increased serum IL-2 and AST/ALT ratio only in ZnR/GPR39 KO mice. Our findings reveal a role of ZnR/GPR39 in controlling hepatic insulin receptor signaling and mitigating liver fibrosis and inflammation, thus underscoring the important role of ZnR/GPR39 in liver signaling and function.
Collapse
Affiliation(s)
- Anil Khushalrao Shendge
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
17
|
Zong R, Liu Y, Zhang M, Liu B, Zhang W, Hu H, Li C. β-Catenin disruption decreases macrophage exosomal α-SNAP and impedes Treg differentiation in acute liver injury. JCI Insight 2024; 10:e182515. [PMID: 39560996 PMCID: PMC11721303 DOI: 10.1172/jci.insight.182515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Hepatic macrophages and regulatory T cells (Tregs) play an important role in the maintenance of liver immune homeostasis, but the mechanism by which hepatic macrophages regulate Tregs in acute liver injury remains largely unknown. Here, we found that the hepatic Treg proportion and β-catenin expression in hepatic macrophages were associated with acetaminophen- and d-galactosamine/LPS-induced acute liver injury. Interestingly, β-catenin was markedly upregulated only in infiltrating macrophages but not in resident Kupffer cells. Myeloid-specific β-catenin-knockout mice showed an increased inflammatory cell infiltration and hepatocyte apoptosis. Moreover, myeloid β-catenin deficiency decreased the hepatic Treg proportion in the injured liver. Mechanistically, in vitro coculture experiments revealed that macrophage β-catenin modulated its exosome composition and influenced Treg differentiation. Using mass spectrometry-based proteomics, we identified that macrophage β-catenin activation increased the level of exosomal alpha soluble NSF attachment protein (α-SNAP), which in turn promoted Treg differentiation. Overall, our findings demonstrated a molecular mechanism that macrophage β-catenin regulated the Treg proportion in the liver by enhancing the expression of exosomal α-SNAP, providing insights into the pathophysiology of acute liver injury.
Collapse
Affiliation(s)
- Ruobin Zong
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yujie Liu
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Mengya Zhang
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Buwei Liu
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Wei Zhang
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Micro-explore Innovative Pharmaceutical Research Co., Ltd, Wuhan, China
- Suzhou Organ-on-a-Chip System Science and Technology Co., Ltd, Suzhou, China
| | - Changyong Li
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| |
Collapse
|
18
|
Ma S, Meng G, Liu T, You J, He R, Zhao X, Cui Y. The Wnt signaling pathway in hepatocellular carcinoma: Regulatory mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 180:117508. [PMID: 39362068 DOI: 10.1016/j.biopha.2024.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor that arises from hepatocytes. Multiple signaling pathways play a regulatory role in the occurrence and development of HCC, with the Wnt signaling pathway being one of the primary regulatory pathways. In normal hepatocytes, the Wnt signaling pathway maintains cell regeneration and organ development. However, when aberrant activated, the Wnt pathway is closely associated with invasion, cancer stem cells(CSCs), drug resistance, and immune evasion in HCC. Among these factors, the development of drug resistance is one of the most important factors affecting the efficacy of HCC treatment. These mechanisms form the basis for tumor cell adaptation and evolution within the body, enabling continuous changes in tumor cells, resistance to drugs and immune system attacks, leading to metastasis and recurrence. In recent years, there have been numerous new discoveries regarding these mechanisms. An increasing number of drugs targeting the Wnt signaling pathway have been developed, with some already entering clinical trials. Therefore, this review encompasses the latest research on the role of the Wnt signaling pathway in the onset and progression of HCC, as well as advancements in its therapeutic strategies.
Collapse
Affiliation(s)
- Shihui Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guorui Meng
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Tong Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Junqi You
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Risheng He
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Xudong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yunfu Cui
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
19
|
Bedi O, Sapra V, Kumar M, Krishan P. Newer mitochondrial dynamics and their role of calcium signalling in liver regeneration. Mitochondrion 2024; 79:101969. [PMID: 39305943 DOI: 10.1016/j.mito.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 11/18/2024]
Abstract
Liver regeneration is a crucial process involved in cellular proliferation, differentiation, and tissue repair. Calcium signaling impact key pathways like hepatocyte growth factor-Met-tyrosine kinase (HGF-Met) transduction pathway, the epidermal growth factor receptor (EGFR) signaling and Ca-mediated nuclear SKHep1 cell proliferation pathway. Intracellular hepatocyte calcium stores are considered as base for the induction of ca-mediated regeneration process. Calcium signaling interplays with HGF, TGF-β, and NF-κB signaling, influence stem cell behavior and triggers MAPK cascade. The mitochondria calcium is impacting on liver rejuvenation by regulating apoptosis and cell division. In conclusion, it is stated that calcium-signaling holds promise for therapeutic liver interventions.
Collapse
Affiliation(s)
- Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Vaibhav Sapra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
20
|
Xu X, Yang A, Han Y, Li S, Hao G, Cui N. Pancancer analysis of the interactions between CTNNB1 and infiltrating immune cell populations. Medicine (Baltimore) 2024; 103:e40186. [PMID: 39495984 PMCID: PMC11537592 DOI: 10.1097/md.0000000000040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Recently, evidence has indicated that CTNNB1 is important in a variety of malignancies. However, how CTNNB1 interacts with immune cell infiltration remains to be further investigated. In this study, we focused on the correlations between CTNNB1 and tumorigenesis, tumor progression, mutation, phosphorylation, and prognosis via gene expression profiling interaction analysis; TIMER 2.0, cBioPortal, GTEx, CPTAC, and GEPIA2 database analyses; and R software. CTNNB1 mutations are most found in uterine endometrioid carcinoma and hepatocellular carcinoma. However, no CTNNB1 mutations were found to be associated with a poor prognosis. In addition, CTNNB1 DNA methylation levels were higher in normal tissues than in tumor tissues in cancer except for breast invasive carcinoma, which had higher methylation levels in tumor tissues. The phosphorylation level of the S675 and S191 sites of CTNNB1 was greater in the primary tumor tissues in the clear cell renal cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, pancreatic adenocarcinoma, and breast cancer datasets but not in the glioblastoma multiform dataset. As for, with respect to immune infiltration, CD8 + T-cell infiltration was negatively correlated with the expression of CTNNB1 in thymoma and uterine corpus endometrial carcinoma. The CTNNB1 level was found to be positively associated with the infiltration index of the corresponding fibroblasts in the TCGA tumors of colon adenocarcinoma, human papillomavirus-negative head and neck squamous cell carcinoma, mesothelioma, testicular germ cell tumor, and thymoma. We also identified the top CTNNB1-correlated genes in the TCGA projects and analyzed the expression correlation between CTNNB1 and selected target genes, including PPP4R2, RHOA, and SPRED1. Additionally, pathway enrichment suggested that NUMB is involved in the Wnt pathway. This study highlights the predictive role of CTNNB1 across cancers, suggesting that CTNNB1 might serve as a potential biomarker for the diagnosis and prognosis evaluation of various malignant tumors.
Collapse
Affiliation(s)
- Xiaoyuan Xu
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aimin Yang
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Han
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siran Li
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimin Hao
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Cui
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
21
|
Tsukanov VV, Tonkikh JL, Kasparov EV, Vasyutin AV. Inhibition of M2 tumor-associated macrophages polarization by modulating the Wnt/β-catenin pathway as a possible liver cancer therapy method. World J Gastroenterol 2024; 30:4399-4403. [PMID: 39494099 PMCID: PMC11525861 DOI: 10.3748/wjg.v30.i40.4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/16/2024] Open
Abstract
The problem of liver cancer is becoming increasingly important due to the epidemic of metabolic diseases and persistent high alcohol consumption. This determines great attention to the development and improvement of methods for early diagnosis and treatment of liver cancer. Huang et al presented a study in the World Journal of Gastroenterology, in which they showed that the use of the traditional Chinese medicine Calculus bovis (CB) can suppress tumor growth in mice by inhibiting M2 tumor-associated macrophages (TAM) through modulating the activity of the Wnt/β-catenin pathway. The interaction of CB components with the Wnt/β-catenin pathway, M2 TAM polarization, and tumor dynamics were studied using network pharmacology, transcriptomics, and molecular docking. It is now generally accepted that the polarization of TAM and the differentiation of the functions of M1 and M2 phagocytes are of great importance for the progression of neoplasms. It is assumed that M2 TAM promote proliferation and migration of tumor cells. Attempts to medicinally influence the Wnt/β-catenin pathway in order to modulate phagocyte polarization now belong to one of the most promising areas of immunotherapy of oncological diseases. Undoubtedly, the work of the Chinese authors deserves attention and further development.
Collapse
Affiliation(s)
- Vladislav V Tsukanov
- Clinical Department of the Digestive System Pathology of Adults and Children, Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, Krasnoyarsk 660022, Russia
| | - Julia L Tonkikh
- Clinical Department of the Digestive System Pathology of Adults and Children, Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, Krasnoyarsk 660022, Russia
| | - Edward V Kasparov
- Clinical Department of the Digestive System Pathology of Adults and Children, Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, Krasnoyarsk 660022, Russia
| | - Alexander V Vasyutin
- Clinical Department of the Digestive System Pathology of Adults and Children, Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, Krasnoyarsk 660022, Russia
| |
Collapse
|
22
|
Xuan M, Gu X, Xing H. Multi-omic analysis identifies the molecular mechanism of hepatocellular carcinoma with cirrhosis. Sci Rep 2024; 14:23832. [PMID: 39394373 PMCID: PMC11470084 DOI: 10.1038/s41598-024-75609-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Hepatocellular carcinoma with cirrhosis promotes the advancement of malignancy and the development of fibrosis in normal liver tissues. Understanding the pathological mechanisms underlying the development of HCC with cirrhosis is important for developing effective therapeutic strategies. Herein, the RNA-sequencing (RNA-seq) data and corresponding clinical features of patients with HCC were extracted from The Cancer Genome Atlas (TCGA) database using the University of California Santa Cruz (UCSC) Xena platform. The enrichment degree of hallmarkers for each TCGA-LIHC cohort was quantified by ssGSEA algorithm. Weighted gene co-expression network analysis (WGCNA) revealed two gene module eigengenes (MEs) associated with cirrhosis, namely, MEbrown and MEgreen. Analysis of these modules using AUCell showed that MEbrown had higher enrichment scores in all immune cells, whereas MEgreen had higher enrichment scores in malignant cells. The CellChat package revealed that both immune and malignant cells contributed to the fibrotic activity of myofibroblasts through diverse signaling pathways. Additionally, spatial transcriptomic data showed that hepatocytes, proliferating hepatocytes, macrophages, and myofibroblasts were located in closer proximity in HCC tissues. These cells may potentially participate in the process of stimulating myofibroblast fibrotic activity, which may be related to the development of liver fibrosis. In summary, we made full use of multi-omics data to explore gene networks and cell types that may be involved in the development and progression of cirrhosis in HCC.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Huiwu Xing
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
23
|
Zhang Y, Ren L, Tian Y, Guo X, Wei F, Zhang Y. Signaling pathways that activate hepatic stellate cells during liver fibrosis. Front Med (Lausanne) 2024; 11:1454980. [PMID: 39359922 PMCID: PMC11445071 DOI: 10.3389/fmed.2024.1454980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Liver fibrosis is a complex process driven by various factors and is a key feature of chronic liver diseases. Its essence is liver tissue remodeling caused by excessive accumulation of collagen and other extracellular matrix. Activation of hepatic stellate cells (HSCs), which are responsible for collagen production, plays a crucial role in promoting the progression of liver fibrosis. Abnormal expression of signaling pathways, such as the TGF-β/Smads pathway, contributes to HSCs activation. Recent studies have shed light on these pathways, providing valuable insights into the development of liver fibrosis. Here, we will review six signaling pathways such as TGF-β/Smads that have been studied more in recent years.
Collapse
Affiliation(s)
- Youtian Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Long Ren
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yinting Tian
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohu Guo
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yawu Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Liang Y, Mei Q, He E, Ballar P, Wei C, Wang Y, Dong Y, Zhou J, Tao X, Qu W, Zhao M, Chhetri G, Wei L, Shao J, Shen Y, Liu J, Feng L, Shen Y. MANF serves as a novel hepatocyte factor to promote liver regeneration after 2/3 partial hepatectomy via doubly targeting Wnt/β-catenin signaling. Cell Death Dis 2024; 15:681. [PMID: 39289348 PMCID: PMC11408687 DOI: 10.1038/s41419-024-07069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Liver regeneration is an intricate pathophysiological process that has been a subject of great interest to the scientific community for many years. The capacity of liver regeneration is very critical for patients with liver diseases. Therefore, exploring the mechanisms of liver regeneration and finding good ways to improve it are very meaningful. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a member of newly identified neurotrophic factors (NTFs) family, extensively expresses in the liver and has demonstrated cytoprotective effects during ER stress and inflammation. However, the role of MANF in liver regeneration remains unclear. Here, we used hepatocyte-specific MANF knockout (MANFHep-/-) mice to investigate the role of MANF in liver regeneration after 2/3 partial hepatectomy (PH). Our results showed that MANF expression was up-regulated in a time-dependent manner, and the peak level of mRNA and protein appeared at 24 h and 36 h after 2/3 PH, respectively. Notably, MANF knockout delayed hepatocyte proliferation, and the peak proliferation period was delayed by 24 h. Mechanistically, our in vitro results showed that MANF physically interacts with LRP5 and β-catenin, two essential components of Wnt/β-catenin pathway. Specifically, as a cofactor, MANF binds to the extracellular segment of LRP5 to activate Wnt/β-catenin signaling. On the other hand, MANF interacts with β-catenin to stabilize cytosolic β-catenin level and promote its nuclear translocation, which further enhance the Wnt/β-catenin signaling. We also found that MANF knockout does not affect the c-Met/β-catenin complex after 2/3 PH. In summary, our study confirms that MANF may serve as a novel hepatocyte factor that is closely linked to the activation of the Wnt/β-catenin pathway via intracellular and extracellular targets.
Collapse
Affiliation(s)
- Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Enguang He
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Petek Ballar
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir, 35100, Turkey
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yue Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yue Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Jie Zhou
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Xiaofang Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Wenyan Qu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Mingxia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Goma Chhetri
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Limeng Wei
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Juntang Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, China.
- Department of General Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
25
|
Abdulaal WH, Omar UM, Zeyadi M, El-Agamy DS, Alhakamy NA, Ibrahim SRM, Almalki NAR, Asfour HZ, Al-Rabia MW, Mohamed GA, Elshal M. Pirfenidone ameliorates ANIT-induced cholestatic liver injury via modulation of FXR, NF-кB/TNF-α, and Wnt/GSK-3β/β-catenin signaling pathways. Toxicol Appl Pharmacol 2024; 490:117038. [PMID: 39019095 DOI: 10.1016/j.taap.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3β/β-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ulfat M Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Nabil A Alhakamy
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
26
|
Liu Y, Wang X, Wang Z, Gao X, Xu H, Gao Y, Niu J. System analysis based on weighted gene co-expression analysis identifies SOX7 as a novel regulator of hepatic stellate cell activation and liver fibrosis. FASEB J 2024; 38:e23495. [PMID: 39126242 DOI: 10.1096/fj.202302379r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 08/12/2024]
Abstract
Hepatic stellate cell (HSC) activation is the essential pathological process of liver fibrosis (LF). The molecular mechanisms regulating HSC activation and LF are incompletely understood. Here, we explored the effect of transcription factor SRY-related high mobility group box 7 (SOX7) on HSC activation and LF, and the underlying molecular mechanism. We found the expression levels of SOX7 were decreased in human and mouse fibrotic livers, particularly at the fibrotic foci. SOX7 was also downregulated in primary activated HSCs and TGF-β1 stimulated LX-2 cells. SOX7 knockdown promoted activation and proliferation of LX-2 cells while inhibiting their apoptosis. On the other hand, overexpression of SOX7 suppressed the activation and proliferation of HSCs. Mechanistically, SOX7 attenuates HSC activation and LF by decreasing the expression of β-catenin and phosphorylation of Smad2 and Smad3 induced by TGF-β1. Furthermore, overexpression of SOX7 using AAV8-SOX7 mouse models ameliorated the extent of LF in response to CCl4 treatment in vivo. Collectively, SOX7 suppressed HSC activation and LF. Targeting SOX7, therefore, could be a potential novel strategy to protect against LF.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaomei Wang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongfeng Wang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiuzhu Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongqin Xu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
Hu T, Tang W, Hong W, Huang Q, Sun X, Wu W, Zhang J. Spermine oxidase regulates liver inflammation and fibrosis through β-catenin pathway. Clin Res Hepatol Gastroenterol 2024; 48:102421. [PMID: 39002816 DOI: 10.1016/j.clinre.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Spermine oxidase (SMOX), an inducible enzyme involved in the catabolic pathway of polyamine, was found to be upregulated in hepatocellular carcinoma and might be an important oncogene of it in our previous studies. This study attempted to further investigate its relationship with liver inflammation and fibrosis both in vitro and in vivo. METHODS The effect of SMOX inhibition on LPS-induced inflammatory response in mouse liver cell line AML12 was validated by using small interfering RNA or SMOX inhibitor MDL72527. Western blotting and immunofluorescence were utilized to verify whether LPS could induce β-catenin to transfer into the nucleus and whether it could be reversed by interfering with the expression of SMOX or using SMOX inhibitor. Then, the SMOX inhibitor MDL72527 and SMOX knockout mice were used to verify the hypothesis above in vivo. RESULTS The expression of SMOX could be induced by LPS in AML12 cells. The inhibition of SMOX could inhibit LPS-induced inflammatory response in AML12 cells. LPS could induce β-catenin transfer from cytoplasm to nucleus, while SMOX downregulation or inhibition could partially reverse this process. In vivo intervention with SMOX inhibitor MDL72527 or SMOX knockout mice could significantly improve the damage of liver function, reduce intrahepatic inflammation, inhibit the nuclear transfer of β-catenin in liver tissue, and alleviate carbon tetrachloride-induced liver fibrosis in mice. CONCLUSION SMOX can promote the inflammatory response and fibrosis of hepatocytes. It provides a new therapeutic strategy for hepatitis and liver fibrosis, inhibiting early liver cancer.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Disease, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qingke Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuecheng Sun
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenzhi Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
28
|
Li L, Wu Y, Huang HT, Yong JK, Lv Z, Zhou Y, Xiang X, Zhao J, Xi Z, Feng H, Xia Q. IMPDH2 suppression impedes cell proliferation by instigating cell cycle arrest and stimulates apoptosis in pediatric hepatoblastoma. J Cancer Res Clin Oncol 2024; 150:377. [PMID: 39085725 PMCID: PMC11291533 DOI: 10.1007/s00432-024-05858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Hepatoblastoma (HB) is the most common pediatric liver tumor, presenting significant therapeutic challenges due to its high rates of recurrence and metastasis. While Inosine Monophosphate Dehydrogenase 2(IMPDH2) has been associated with cancer progression, its specific role and clinical implications in HB have not been fully elucidated. METHODS This study utilized Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and Tissue Microarray (TMA) for validation. Following this, IMPDH2 was suppressed, and a series of in vitro assays were conducted. Flow cytometry was employed to assess apoptosis and cell cycle arrest. Additionally, the study explored the synergistic therapeutic effects of mycophenolate mofetil (MMF) and doxorubicin (DOX) on HB cell lines. RESULTS The study identified a marked overexpression of IMPDH2 in HB tissues, which was strongly correlated with reduced Overall Survival (OS) and Event-Free Survival (EFS). IMPDH2 upregulation was also found to be associated with key clinical-pathological features, including pre-chemotherapy alpha-fetoprotein (AFP) levels, presence of preoperative metastasis, and the pre-treatment extent of tumor (PRETEXT) staging system. Knockdown of IMPDH2 significantly inhibited HB cell proliferation and tumorigenicity, inducing cell cycle arrest at the G0/G1 phase. Notably, the combination of MMF, identified as a specific IMPDH2 inhibitor, with DOX, substantially enhanced the therapeutic response. CONCLUSION The overexpression of IMPDH2 was closely linked to adverse outcomes in HB patients and appeared to accelerate cell cycle progression. These findings suggest that IMPDH2 may serve as a valuable prognostic indicator and a potential therapeutic target for HB. IMPACT The present study unveiled a significant overexpression of inosine monophosphate dehydrogenase 2 (IMPDH2) in hepatoblastoma (HB) tissues, particularly in association with metastasis and recurrence of the disease. The pronounced upregulation of IMPDH2 was found to be intimately correlated with adverse outcomes in HB patients. This overexpression appears to accelerate the progression of the cell cycle, suggesting that IMPDH2 may serve as a promising candidate for both a prognostic marker and a therapeutic target in the context of HB.
Collapse
Affiliation(s)
- Linman Li
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, 200127, China
| | - Yichi Wu
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, 200127, China
| | - Hong-Ting Huang
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - June-Kong Yong
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zicheng Lv
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Clinical Research Unit, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yi Zhou
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, 200127, China
| | - Xuelin Xiang
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, 200127, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, 200127, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Clinical Research Unit, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital (Punan Branch), School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, 200127, China.
| |
Collapse
|
29
|
Smith L, Santiago EG, Eke C, Gu W, Wang W, Llivichuzhca-Loja D, Kehoe T, St Denis K, Strine M, Taylor S, Tseng G, Konnikova L. Human Milk Supports Robust Intestinal Organoid Growth, Differentiation, and Homeostatic Cytokine Production. GASTRO HEP ADVANCES 2024; 3:1030-1042. [PMID: 39529649 PMCID: PMC11550179 DOI: 10.1016/j.gastha.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/11/2024] [Indexed: 11/16/2024]
Abstract
Background and Aims Necrotizing enterocolitis is a severe gastrointestinal complication of prematurity. Using small intestinal organoids derived from fetal tissue of a gestational age similar to an extremely preterm infant, this study aims to assess the effect of diet on intestinal epithelial growth and differentiation to elucidate the role nutrition type plays in intestinal development and modifies the risk for necrotizing enterocolitis. Methods Organoids were cultured for 5 days in growth media and 5 days in differentiation media supplemented 1:40 with 4 different diets: parental milk, donor human milk, standard formula, or extensively hydrolyzed formula. Images were captured daily and organoids were quantified. Organoids were preserved for RNA sequencing and immunofluorescence staining with Ki67, cleaved caspase 3, and chromogranin-A. Media was saved for cytokine/chemokine and growth factor analysis. Results Human milk supplementation improved growth and differentiation of intestinal organoids generating larger organoids during the growth phase and organoids with longer and wider buds during differentiation compared to formula. Ki67 staining confirmed the proliferative nature of milk-supplemented organoids and chromogranin A staining proved that MM-supplemented organoids induced highest enteroendocrine differentiation. Human milk supplementation also upregulated genes involved in Wnt signaling and fatty acid metabolism pathways and promoted a homeostatic immune landscape, including via increased secretion of tumor necrosis factor-related apoptosis-inducing ligand among other cytokines. Conversely, organoids supplemented with formula had a downregulation of cell-cycle-promoting genes and a more inflammatory immune signature, including a reduced level of leukemia inhibitory factor. Conclusion Our results demonstrate that parental milk, and to a lesser extent donor human milk, support robust intestinal epithelial proliferation, differentiation, and homeostatic cytokine production, suggesting a critical role for factors enriched in human milk in intestinal epithelial health.
Collapse
Affiliation(s)
- Lauren Smith
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | | | - Chino Eke
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Weihong Gu
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Wenjia Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Tessa Kehoe
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Kerri St Denis
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Madison Strine
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Sarah Taylor
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Liza Konnikova
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
- Program in Human and Translational Immunology, Yale School of Medicine, New Haven, Connecticut
- Program in Translational Biomedicine, Yale School of Medicine, New Haven, Connecticut
- Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
30
|
Arefan D, D'Ardenne NM, Iranpour N, Catania R, Yousef J, Chupetlovska K, Moghe A, Sholosh B, Thangasamy S, Borhani AA, Singhi AD, Monga SP, Furlan A, Wu S. Quantitative radiomics and qualitative LI-RADS imaging descriptors for non-invasive assessment of β-catenin mutation status in hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:2220-2230. [PMID: 38782785 DOI: 10.1007/s00261-024-04344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Gain-of-function mutations in CTNNB1, gene encoding for β-catenin, are observed in 25-30% of hepatocellular carcinomas (HCCs). Recent studies have shown β-catenin activation to have distinct roles in HCC susceptibility to mTOR inhibitors and resistance to immunotherapy. Our goal was to develop and test a computational imaging-based model to non-invasively assess β-catenin activation in HCC, since liver biopsies are often not done due to risk of complications. METHODS This IRB-approved retrospective study included 134 subjects with pathologically proven HCC and available β-catenin activation status, who also had either CT or MR imaging of the liver performed within 1 year of histological assessment. For qualitative descriptors, experienced radiologists assessed the presence of imaging features listed in LI-RADS v2018. For quantitative analysis, a single biopsy proven tumor underwent a 3D segmentation and radiomics features were extracted. We developed prediction models to assess the β-catenin activation in HCC using both qualitative and quantitative descriptors. RESULTS There were 41 cases (31%) with β-catenin mutation and 93 cases (69%) without. The model's AUC was 0.70 (95% CI 0.60, 0.79) using radiomics features and 0.64 (0.52, 0.74; p = 0.468) using qualitative descriptors. However, when combined, the AUC increased to 0.88 (0.80, 0.92; p = 0.009). Among the LI-RADS descriptors, the presence of a nodule-in-nodule showed a significant association with β-catenin mutations (p = 0.015). Additionally, 88 radiomics features exhibited a significant association (p < 0.05) with β-catenin mutations. CONCLUSION Combination of LI-RADS descriptors and CT/MRI-derived radiomics determine β-catenin activation status in HCC with high confidence, making precision medicine a possibility.
Collapse
Affiliation(s)
- Dooman Arefan
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite 200, Pittsburgh, PA, 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicholas M D'Ardenne
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite 200, Pittsburgh, PA, 15213, USA
| | - Negaur Iranpour
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roberta Catania
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Suite 800, Chicago, IL, 60611, USA
| | - Jacob Yousef
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite 200, Pittsburgh, PA, 15213, USA
| | - Kalina Chupetlovska
- Diagnostic Imaging Department, University Hospital "Saint Ivan Rilski", Sofia, Bulgaria
| | - Akshata Moghe
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Biatta Sholosh
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite 200, Pittsburgh, PA, 15213, USA
| | - Senthur Thangasamy
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite 200, Pittsburgh, PA, 15213, USA
| | - Amir A Borhani
- Department of Radiology, Northwestern University Feinberg School of Medicine, 676 N. Saint Clair Street, Suite 800, Chicago, IL, 60611, USA
| | - Aatur D Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh Medical Center, S405A-BST, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Satdarshan P Monga
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh Medical Center, S405A-BST, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite 200, Pittsburgh, PA, 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shandong Wu
- Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite 200, Pittsburgh, PA, 15213, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Zong Z, Tang G, Guo Y, Kong F. Down-regulated expression of TIPE3 inhibits malignant progression of non-small cell lung cancer via Wnt signaling. Exp Cell Res 2024; 439:114093. [PMID: 38759744 DOI: 10.1016/j.yexcr.2024.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Non-small cell lung cancer (NSCLC) accounts for approximately 80 % of all lung cancers with a low five-year survival rate. Therefore, the mechanistic pathways and biomarkers of NSCLC must be explored to elucidate its pathogenesis. In this study, we examined TIPE3 expression in NSCLC cells and investigated the molecular mechanisms underlying NSCLC regulation in vivo and in vitro. We collected tissue samples from patients with NSCLC to examine TIPE3 expression and its association with patient metastasis and prognosis. Furthermore, we evaluated the expression level of TIPE3 in NSCLC cells. Cell lines with the highest expression were selected for molecular mechanism experiments, and animal models were established for in vivo verification. The results showed that TIPE3 was significantly increased in patients with NSCLC, and this increased expression was associated with tumor metastasis and patient prognosis. TIPE3 knockdown inhibited proliferation, migration, invasion, EMT, angiogenesis, and tumorsphere formation in NSCLC cells. Moreover, it reduced the metabolic levels of tumor cells. However, overexpression of TIPE3 has the opposite effect. The in vivo results showed that TIPE3 knockdown reduced tumor volume, weight, and metastasis. Furthermore, the results showed that TIPE3 may inhibit malignant progression of NSCLC via the regulation of Wnt/β-catenin expression. These findings suggest that TIPE3 is significantly elevated in patients with NSCLC and that downregulation of TIPE3 can suppress the malignant progression of NSCLC, which could serve as a potential diagnostic and treatment strategy for NSCLC.
Collapse
Affiliation(s)
- Zhenfeng Zong
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, 061000, China.
| | - Guojie Tang
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, 061000, China
| | - Yu Guo
- Department of Respiratory Medicine, Hejian People's Hospital, Cangzhou, Hebei, 061000, China
| | - Fanyi Kong
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, 061000, China
| |
Collapse
|
32
|
Ke S, Lu S, Xu Y, Bai M, Yu H, Yin B, Wang C, Feng Z, Li Z, Huang J, Li X, Qian B, Hua Y, Fu Y, Sun B, Wu Y, Ma Y. RGS19 activates the MYH9/β-catenin/c-Myc positive feedback loop in hepatocellular carcinoma. Exp Mol Med 2024; 56:1412-1425. [PMID: 38825640 PMCID: PMC11263569 DOI: 10.1038/s12276-024-01244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 06/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common fatal cancers worldwide, and the identification of novel treatment targets and prognostic biomarkers is urgently needed because of its unsatisfactory prognosis. Regulator of G-protein signaling 19 (RGS19) is a multifunctional protein that regulates the progression of various cancers. However, the specific function of RGS19 in HCC remains unclear. The expression of RGS19 was determined in clinical HCC samples. Functional and molecular biology experiments involving RGS19 were performed to explore the potential mechanisms of RGS19 in HCC. The results showed that the expression of RGS19 is upregulated in HCC tissues and is significantly associated with poor prognosis in HCC patients. RGS19 promotes the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanistically, RGS19, via its RGS domain, stabilizes the MYH9 protein by directly inhibiting the interaction of MYH9 with STUB1, which has been identified as an E3 ligase of MYH9. Moreover, RGS19 activates β-catenin/c-Myc signaling via MYH9, and RGS19 is also a transcriptional target gene of c-Myc. A positive feedback loop formed by RGS19, MYH9, and the β-catenin/c-Myc axis was found in HCC. In conclusion, our research revealed that competition between RGS19 and STUB1 is a critical mechanism of MYH9 regulation and that the RGS19/MYH9/β-catenin/c-Myc feedback loop may represent a promising strategy for HCC therapy.
Collapse
Affiliation(s)
- Shanjia Ke
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miaoyu Bai
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhigang Feng
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Zihao Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Huang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yaohua Wu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of Thyroid Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
33
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
34
|
Wang Y, Cheng C, Lu Y, Lian Z, Liu Q, Xu Y, Li Y, Li H, Zhang L, Jiang X, Li B, Yu D. β-Catenin Activation Reprograms Ammonia Metabolism to Promote Senescence Resistance in Hepatocellular Carcinoma. Cancer Res 2024; 84:1643-1658. [PMID: 38417136 DOI: 10.1158/0008-5472.can-23-0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/26/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Hepatocellular carcinoma (HCC) is a typical tumor that undergoes metabolic reprogramming, differing from normal liver tissue in glucose, lipid, nucleic acid, and amino acid metabolism. Although ammonia is a toxic metabolic by-product, it has also been recently recognized as a signaling molecule to activate lipid metabolism, and it can be a nitrogen source for biosynthesis to support tumorigenesis. In this study, we revealed that β-catenin activation increases ammonia production in HCC mainly by stimulating glutaminolysis. β-Catenin/LEF1 activated the transcription of the glutamate dehydrogenase GLUD1, which then promoted ammonia utilization to enhance the production of glutamate, aspartate, and proline as evidenced by 15NH4Cl metabolic flux. β-Catenin/TCF4 induced the transcription of SLC4A11, an ammonia transporter, to excrete excess ammonia. SLC4A11 was upregulated in HCC tumor tissues, and high SLC4A11 expression was associated with poor prognosis and advanced disease stages. Loss of SLC4A11 induced HCC cell senescence in vitro by blocking ammonia excretion and reduced β-catenin-driven tumor growth in vivo. Furthermore, elevated levels of plasma ammonia promoted the progression of β-catenin mutant HCC, which was impeded by SLC4A11 deficiency. Downregulation of SLC4A11 led to ammonia accumulation in tumor interstitial fluid and decreased plasma ammonia levels in HCC with activated β-catenin. Altogether, this study indicates that β-catenin activation reprograms ammonia metabolism and that blocking ammonia excretion by targeting SLC4A11 could be a promising approach to induce senescence in β-catenin mutant HCC. SIGNIFICANCE Ammonia metabolism reprogramming mediated by aberrant activation of β-catenin induces resistance to senescence in HCC and can be targeted by inhibiting SLC4A11 as a potential therapy for β-catenin mutant liver cancer.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chunxiao Cheng
- Department of Hepatobiliary, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanjun Lu
- Department of Hepatobiliary, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaowu Lian
- Department of Hepatobiliary, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yanchao Xu
- Department of Hepatobiliary, Nanjing Drum Tower Hospital, the Affiliated Hospital of Jiangsu University, Nanjing, China
| | - Yunzheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Laizhu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Binghua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Hepatobiliary, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hepatobiliary, Nanjing Drum Tower Hospital, the Affiliated Hospital of Jiangsu University, Nanjing, China
| |
Collapse
|
35
|
Wu L, Lv X, Zhang J, Wu M, Zhao X, Shi X, Ma W, Li X, Zou Y. Roles of β-catenin in innate immune process and regulating intestinal flora in Qi river crucian carp (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109521. [PMID: 38552889 DOI: 10.1016/j.fsi.2024.109521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
In mammals, β-catenin participates in innate immune process through interaction with NF-κB signaling pathway. However, its role in teleost immune processes remains largely unknown. We aimed to clarify the function of β-catenin in the natural defense mechanism of Qi river crucian carp (Carassius auratus). β-catenin exhibited a ubiquitous expression pattern in adult fish, as indicated by real-time PCR analysis. Following lipopolysaccharide (LPS), Polyinosinic-polycytidylic acid (polyI: C) and Aeromonas hydrophila (A. hydrophila) challenges, β-catenin increased in gill, intestine, liver and kidney, indicating that β-catenin likely plays a pivotal role in the immune response against pathogen infiltration. Inhibition of the β-catenin pathway using FH535, an inhibitor of Wnt/β-catenin pathway, resulting in pathological damage of the gill, intestine, liver and kidney, significant decrease of innate immune factors (C3, defb3, LYZ-C, INF-γ), upregulation of inflammatory factors (NF-κB, TNF-α, IL-1, IL-8), and downregulation of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities, increase of Malondialdehyde (MDA) content. Following A. hydrophila invasion, the mortality rate in the FH535 treatment group exceeded that of the control group. In addition, the diversity of intestinal microflora decreased and the community structure was uneven after FH535 treatment. In summary, our findings strongly suggest that β-catenin plays a vital role in combating pathogen invasion and regulating intestinal flora in Qi river crucian carp.
Collapse
Affiliation(s)
- Limin Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Xixi Lv
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jingjing Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengfan Wu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xi Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Wenge Ma
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, Henan, China.
| | - Yuanchao Zou
- College of Life Sciences, Neijiang Normal University, Conservation and Utilization of Fishes resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang, Sichuan, 641100, PR China.
| |
Collapse
|
36
|
Matsumoto S, Kikuchi A. Wnt/β-catenin signaling pathway in liver biology and tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:466-481. [PMID: 38379098 DOI: 10.1007/s11626-024-00858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling pathway that controls fundamental physiological and pathological processes by regulating cell proliferation and differentiation. The Wnt/β-catenin pathway enables liver homeostasis by inducing differentiation and contributes to liver-specific features such as metabolic zonation and regeneration. In contrast, abnormalities in the Wnt/β-catenin pathway promote the development and progression of hepatocellular carcinoma (HCC). Similarly, hepatoblastoma, the most common childhood liver cancer, is frequently associated with β-catenin mutations, which activate Wnt/β-catenin signaling. HCCs with activation of the Wnt/β-catenin pathway have unique gene expression patterns and pathological and clinical features. Accordingly, they are highly differentiated with retaining hepatocyte-like characteristics and tumorigenic. Activation of the Wnt/β-catenin pathway in HCC also alters the state of immune cells, causing "immune evasion" with inducing resistance to immune checkpoint inhibitors, which have recently become widely used to treat HCC. Activated Wnt/β-catenin signaling exhibits these phenomena in liver tumorigenesis through the expression of downstream target genes, and the molecular basis is still poorly understood. In this review, we describe the physiological roles of Wnt/b-catenin signaling and then discuss their characteristic changes by the abnormal activation of Wnt/b-catenin signaling. Clarification of the mechanism would contribute to the development of therapeutic agents in the future.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Center of Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
37
|
Ogamino S, Yamamichi M, Sato K, Ishitani T. Dynamics of Wnt/β-catenin reporter activity throughout whole life in a naturally short-lived vertebrate. NPJ AGING 2024; 10:23. [PMID: 38684674 PMCID: PMC11059364 DOI: 10.1038/s41514-024-00149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Wnt/β-catenin signaling plays a major role in regulation of embryogenesis, organogenesis, and adult tissue homeostasis and regeneration. However, the roles played by Wnt/β-catenin and the spatiotemporal regulation of its activity throughout life, including during aging, are not fully understood. To address these issues, we introduced a Wnt/β-catenin signaling sensitive reporter into African turquoise killifish (Nothobranchius furzeri), a naturally ultra-short-lived fish that allows for the analysis of its whole life within a short period of time. Using this reporter killifish, we unraveled the previously unidentified dynamics of Wnt/β-catenin signaling during development and aging. Using the reporter strain, we detected Wnt/β-catenin activity in actively developing tissues as reported in previous reports, but also observed activation and attenuation of Wnt/β-catenin activity during embryonic reaggregation and diapause, respectively. During the aging process, the reporter was activated in the choroidal layer and liver, but its expression decreased in the kidneys. In addition, the reporter also revealed that aging disrupts the spatial regulation and intensity control of Wnt/β-catenin activity seen during fin regeneration, which interferes with precise regeneration. Thus, the employed reporter killifish is a highly useful model for investigating the dynamics of Wnt/β-catenin signaling during both the developmental and aging process.
Collapse
Affiliation(s)
- Shohei Ogamino
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Moeko Yamamichi
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Sato
- Institute for Molecular & Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
38
|
Nofal AE, AboShabaan HS, Fadda WA, Ereba RE, Elsharkawy SM, Hathout HM. L-carnitine and Ginkgo biloba Supplementation In Vivo Ameliorates HCD-Induced Steatohepatitis and Dyslipidemia by Regulating Hepatic Metabolism. Cells 2024; 13:732. [PMID: 38727268 PMCID: PMC11083725 DOI: 10.3390/cells13090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Treatment strategies for steatohepatitis are of special interest given the high prevalence of obesity and fatty liver disease worldwide. This study aimed to investigate the potential therapeutic mechanism of L-carnitine (LC) and Ginkgo biloba leaf extract (GB) supplementation in ameliorating the adverse effects of hyperlipidemia and hepatosteatosis induced by a high-cholesterol diet (HCD) in an animal model. The study involved 50 rats divided into five groups, including a control group, a group receiving only an HCD, and three groups receiving an HCD along with either LC (300 mg LC/kg bw), GB (100 mg GB/kg bw), or both. After eight weeks, various parameters related to lipid and glucose metabolism, antioxidant capacity, histopathology, immune reactivity, and liver ultrastructure were measured. LC + GB supplementation reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, glucose, insulin, HOMA-IR, alanine transaminase, and aspartate transaminase levels and increased high-density lipoprotein cholesterol levels compared with those in the HCD group. Additionally, treatment with both supplements improved antioxidant ability and reduced lipid peroxidation. The histological examination confirmed that the combination therapy reduced liver steatosis and fibrosis while also improving the appearance of cell organelles in the ultrastructural hepatocytes. Finally, the immunohistochemical analysis indicated that cotreatment with LC + GB upregulated the immune expression of GLP-1 and β-Cat in liver sections that were similar to those of the control animals. Mono-treatment with LC or GB alone substantially but not completely protected the liver tissue, while the combined use of LC and GB may be more effective in treating liver damage caused by high cholesterol than either supplement alone by regulating hepatic oxidative stress and the protein expression of GLP-1 and β-Cat.
Collapse
Affiliation(s)
- Amany E. Nofal
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Hind S. AboShabaan
- Clinical Pathology Department, National Liver Institute Hospital, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Walaa A. Fadda
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Rafik E. Ereba
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cario 11511, Egypt;
| | | | - Heba M. Hathout
- Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt
| |
Collapse
|
39
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
40
|
Ying K, Zeng Y, Xu J, Wu X, Ying H, Cai W, Zhou R, Xu Q, Zhang X, Yu F. LncRNA SNHG11 reprograms glutaminolysis in hepatic stellate cells via Wnt/β-catenin/GLS axis. Biochem Pharmacol 2024; 221:116044. [PMID: 38336157 DOI: 10.1016/j.bcp.2024.116044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as decisive regulators of liver fibrosis. Hepatic stellate cells (HSCs), major hepatic cells contributing to liver fibrosis, undergo metabolic reprogramming for transdifferentiation and activation maintenance. As a crucial part of metabolic reprogramming, glutaminolysis fuels the tricyclic acid (TCA) cycle that renders HSCs addicted to glutamine. However, how lncRNAs reprogram glutamine metabolism in HSCs is unknown. For this research, we characterized the pro-fibrogenic function of small nucleolar host gene 11 (SNHG11). Our data showed that in carbon tetrachloride (CCl4, 7 μL/g, intraperitoneally) treated C57BL/6J mice, SNHG11 expression was highly up-regulated in fibrotic livers and activated primary HSCs. SNHG11 knockdown attenuated the accumulation of fibrotic markers α-SMA and Col1A1 in liver fibrosis tissues and activated HSCs. Western blot and qRT-PCR assays demonstrated that glutaminase (GLS), the rate-limiting enzyme for glutaminolysis, was a downstream target of SNHG11. Furthermore, SNHG11 upregulated glutaminolysis in HSCs through the activation of the Wnt/β-catenin signaling pathway. The results highlighted that SNHG11 is a glutaminolysis-regulated lncRNA that promotes liver fibrosis. A novel insight into the metabolic mechanism that reprograms glutaminolysis in HSCs could be exploited as anti-fibrotic targets.
Collapse
Affiliation(s)
- Kanglei Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huiya Ying
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weimin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruoru Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
41
|
Tang M, Wu ZE, Li F. Integrating network pharmacology and drug side-effect data to explore mechanism of liver injury-induced by tyrosine kinase inhibitors. Comput Biol Med 2024; 170:108040. [PMID: 38308871 DOI: 10.1016/j.compbiomed.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are highly efficient small-molecule anticancer drugs. Despite the specificity and efficacy of TKIs, they can produce off-target effects, leading to severe liver toxicity, and even some of them are labeled as black box hepatotoxicity. Thus, we focused on representative TKIs associated with severe hepatic adverse events, namely lapatinib, pazopanib, regorafenib, and sunitinib as objections of study, then integrated drug side-effect data from United State Food and Drug Administration (U.S. FDA) and network pharmacology to elucidate mechanism underlying TKI-induced liver injury. Based on network pharmacology, we constructed a specific comorbidity module of high risk of serious adverse effects and created drug-disease networks. Enrichment analysis of the networks revealed the depletion of all-trans-retinoic acid and the involvement of down-regulation of the HSP70 family-mediated endoplasmic reticulum (ER) stress as key factors in TKI-induced liver injury. These results were further verified by transcription data. Based on the target prediction results of drugs and reactive metabolites, we also shed light on the association between toxic metabolites and severe hepatic adverse reactions, and thinking HSPA8, HSPA1A, CYP1A1, CYP1A2 and CYP3A4 were potential therapeutic or preventive targets against TKI-induced liver injury. In conclusion, our research provides comprehensive insights into the mechanism underlying severe liver injury caused by TKIs, offering a better understanding of how to enhance patient safety and treatment efficacy.
Collapse
Affiliation(s)
- Miaomiao Tang
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhanxuan E Wu
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
42
|
Li X, Feng L, Kuang Q, Wang X, Yang J, Niu X, Gao L, Huang L, Luo P, Li L. Microplastics cause hepatotoxicity in diabetic mice by disrupting glucolipid metabolism via PP2A/AMPK/HNF4A and promoting fibrosis via the Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1018-1030. [PMID: 38064261 DOI: 10.1002/tox.24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 01/09/2024]
Abstract
In recent years, microplastics (MPs) have gained significant attention as a persistent environmental pollutant resulting from the decomposition of plastics, leading to their accumulation in the human body. The liver, particularly of individuals with type 2 diabetes mellitus (T2DM), is known to be more susceptible to the adverse effects of environmental pollutants. Therefore, to investigate the potential impact of MPs on the liver of diabetic mice and elucidate the underlying toxicological mechanisms, we exposed db/db mice to 0.5 μm MPs for 3 months. Our results revealed that MPs exposure resulted in several harmful effects, including decreased body weight, disruption of liver structure and function, elevated blood glucose levels, impaired glucose tolerance, and increased glycogen accumulation in the hepatic tissue of the mice. Furthermore, MPs exposure was found to promote hepatic gluconeogenesis by perturbing the PP2A/AMPK/HNF4A signaling pathway. In addition, MPs disrupt redox balance, leading to oxidative damage in the liver. This exposure also disrupted hepatic lipid metabolism, stimulating lipid synthesis while inhibiting catabolism, ultimately resulting in the development of fatty liver. Moreover, MPs were found to induce liver fibrosis by activating the Wnt/β-catenin signaling pathway. Furthermore, MPs influenced adaptive thermogenesis in brown fat by modulating the expression of uncoupling protein 1 (UCP1) and genes associated with mitochondrial oxidative respiration thermogenesis in brown fat. In conclusion, our study demonstrates that MPs induce oxidative damage in the liver, disturb glucose and lipid metabolism, promote hepatic fibrosis, and influence adaptive thermogenesis in brown fat in diabetic mice. These findings underscore the potential adverse effects of MPs on liver health in individuals with T2DM and highlight the importance of further research in this area.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Lixiang Feng
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Jun Yang
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Ahmad A, Tiwari RK, Siddiqui S, Chadha M, Shukla R, Srivastava V. Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:41-99. [PMID: 38663962 DOI: 10.1016/bs.ircmb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saleha Siddiqui
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Muskan Chadha
- Department of Nutrition and Dietetics, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vivek Srivastava
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
44
|
Chen Y, Shen C, Wu J, Yan X, Huang Q. Role of immune related genes in predicting prognosis and immune response in patients with hepatocellular carcinoma. J Biochem Mol Toxicol 2024; 38:e23519. [PMID: 37665680 DOI: 10.1002/jbt.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/25/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Immunotherapy has developed rapidly in recent years. This study aimed to establish a prognostic signature for immune-related genes (IRGs) and explore related potential immunotherapies. The RNA-seq transcriptome profiles and clinicopathological information of patients were obtained from The Cancer Genome Atlas. Differentially expressed IRGs in tumors and normal tissues were screened and a risk score signature was constructed to predict the prognosis in patients with hepatocellular carcinoma (HCC). Receiver operating characteristic curves, survival analyses, and correlation analyses were used to explore the clinical application of this model. We further analyzed the differences in clinical characteristics, immune infiltration, somatic mutations, and treatment sensitivity between the high- and low-risk populations characterized by the prognostic models. The immune cell infiltration score and immune-related pathway activity were calculated using the single sample gene set enrichment analysis (ssGSEA) set enrichment analysis. Gene ontology (GO), Kyoto encyclopedia of genes and genomes, and GSEA were used to explore the underlying mechanisms. We constructed a nine-IRG formula to predict the prognosis in HCC patients. The higher the risk score, the higher the malignancy of the tumor and the worse the prognosis. There were significant differences in immune related processes between the high- and low-risk groups. TP53 and CTNNB1 mutations were significantly different between different risk groups. The expression of model gene was closely related to the sensitivity of tumor cells to chemotherapeutic drugs. This risk score model, which is helpful for the individualized treatment of patients with different risk factors, could be a reliable prognostic tool for HCC patients.
Collapse
Affiliation(s)
- Yi Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Chuchen Shen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Juju Wu
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Xiaodan Yan
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Qin Huang
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| |
Collapse
|
45
|
Hakami MA, Hazazi A, Abdulaziz O, Almasoudi HH, Alhazmi AYM, Alkhalil SS, Alharthi NS, Alhuthali HM, Almalki WH, Gupta G, Khan FR. HOTAIR: A key regulator of the Wnt/β-catenin signaling cascade in cancer progression and treatment. Pathol Res Pract 2024; 253:154957. [PMID: 38000201 DOI: 10.1016/j.prp.2023.154957] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The long non-coding RNA (lncRNA) HOTAIR occupies a central position in the complex domain of cancer biology, particularly concerning its intricate interplay with the Wnt/β-catenin signaling pathway. This comprehensive review explores the multifaceted interactions between HOTAIR and the Wnt/β-catenin cascade, elucidating their profound function in cancer growth, progression, and therapeutic strategies. The study commences by underscoring the pivotal role of the Wnt/β-catenin cascade in governing essential cellular activities, emphasizing its dysregulation as a linchpin in cancer initiation and advancement. It introduces HOTAIR as a crucial regulatory entity, influencing gene expression in both healthy and diseased. The core of this review plunges into the intricacies of HOTAIR's engagement with Wnt/β-catenin signaling. It unravels how HOTAIR, through epigenetic modifications and transcriptional control, exerts its influence over key pathway constituents, including β-catenin, Wnt ligands, and target genes. This influence drives unchecked cancer cell growth, invasion, and metastasis. Furthermore, the review underscores the clinical significance of the HOTAIR-Wnt/β-catenin interplay, elucidating its associations with diverse cancer subtypes, patient prognoses, and prospects as a therapy. It provides insights into ongoing research endeavors to develop HOTAIR-targeted treatments and initiatives to facilitate aberrant Wnt/β-catenin activation. Concluding on a forward-looking note, the article accentuates the broader implications of HOTAIR's involvement in cancer biology, including its contributions to therapy resistance and metastatic dissemination. It underscores the importance of delving deeper into these intricate molecular relationships to pave the way for groundbreaking cancer treatment.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif Province, Saudi Arabia
| | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | | | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences. College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | - Hayaa M Alhuthali
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif Province, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
46
|
Shree Harini K, Ezhilarasan D, Mani U. Molecular insights on intracellular Wnt/β-catenin signaling in alcoholic liver disease. Cell Biochem Funct 2024; 42:e3916. [PMID: 38269515 DOI: 10.1002/cbf.3916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
Alcoholic liver disease (ALD) is one of the most common health problems worldwide, especially in developing countries caused by chronic consumption of alcohol on a daily basis. The ALD spectrum is initiated with the early stages of alcoholic fatty liver (steatosis), progressing to alcoholic steatohepatitis, followed by the later stages of fibrosis and in some cases, cirrhosis and hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling required for healthy liver development, function, and regeneration is found to be aberrated in ALD, attributed to its progression. This review is to elucidate the association of Wnt/β-catenin signaling with various stages of ALD progression. Alcohol causes downregulation of Wnt/β-catenin signaling components and thereby suppressing the pathway. Reports have been published that aberrated Wnt/β-catenin signaling, especially the absence of β-catenin, results in decreased alcohol metabolism, causing steatosis followed by steatohepatitis via lipid accumulation, lipid peroxidation, liver injury, increased oxidative stress and apoptosis of hepatocytes, contributing to the advancement of ALD. Contrastingly, the progression of later stages of ALD like fibrosis and HCC depends on the increased activation of Wnt/β-catenin signaling and its components. Existing studies reveal the varied expression of Wnt/β-catenin signaling in ALD. However, the dual role of the Wnt/β-catenin pathway in earlier and later stages of ALD is not clear. Therefore, studies on the Wnt/β-catenin pathway and its components in various manifestations of ALD might provide insight in targeting the Wnt/β-catenin pathway in ALD treatment.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Hepatology & Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology & Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Uthirappan Mani
- Animal House Division, CSIR-Central Leather Research Institute, Chennai, India
| |
Collapse
|
47
|
Sun Q, Xing X, Wang H, Wan K, Fan R, Liu C, Wang Y, Wu W, Wang Y, Wang R. SCD1 is the critical signaling hub to mediate metabolic diseases: Mechanism and the development of its inhibitors. Biomed Pharmacother 2024; 170:115586. [PMID: 38042113 DOI: 10.1016/j.biopha.2023.115586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic diseases, featured with dysregulated energy homeostasis, have become major global health challenges. Patients with metabolic diseases have high probability to manifest multiple complications in lipid metabolism, e.g. obesity, insulin resistance and fatty liver. Therefore, targeting the hub genes in lipid metabolism may systemically ameliorate the metabolic diseases, along with the complications. Stearoyl-CoA desaturase 1(SCD1) is a key enzyme that desaturates the saturated fatty acids (SFAs) derived from de novo lipogenesis or diet to generate monounsaturated fatty acids (MUFAs). SCD1 maintains the metabolic and tissue homeostasis by responding to, and integrating the multiple layers of endogenous stimuli, which is mediated by the synthesized MUFAs. It critically regulates a myriad of physiological processes, including energy homeostasis, development, autophagy, tumorigenesis and inflammation. Aberrant transcriptional and epigenetic activation of SCD1 regulates AMPK/ACC, SIRT1/PGC1α, NcDase/Wnt, etc, and causes aberrant lipid accumulation, thereby promoting the progression of obesity, non-alcoholic fatty liver, diabetes and cancer. This review critically assesses the integrative mechanisms of the (patho)physiological functions of SCD1 in metabolic homeostasis, inflammation and autophagy. For translational perspective, potent SCD1 inhibitors have been developed to treat various types of cancer. We thus discuss the multidisciplinary advances that greatly accelerate the development of SCD1 new inhibitors. In conclusion, besides cancer treatment, SCD1 may serve as the promising target to combat multiple metabolic complications simultaneously.
Collapse
Affiliation(s)
- Qin Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaorui Xing
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Huanyu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Kang Wan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ruobing Fan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Cheng Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yongjian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
48
|
Elmetwalli A, Nageh A, Youssef AI, Youssef M, Ahmed MAER, Noreldin AE, El-Sewedy T. Ammonia scavenger and glutamine synthetase inhibitors cocktail in targeting mTOR/β-catenin and MMP-14 for nitrogen homeostasis and liver cancer. Med Oncol 2023; 41:38. [PMID: 38157146 DOI: 10.1007/s12032-023-02250-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
The glutamine synthetase (GS) facilitates cancer cell growth by catalyzing de novo glutamine synthesis. This enzyme removes ammonia waste from the liver following the urea cycle. Since cancer development is associated with dysregulated urea cycles, there has been no investigation of GS's role in ammonia clearance. Here, we demonstrate that, although GS expression is increased in the setting of β-catenin oncogenic activation, it is insufficient to clear the ammonia waste burden due to the dysregulated urea cycle and may thus be unable to prevent cancer formation. In vivo study, a total of 165 male Swiss albino mice allocated in 11 groups were used, and liver cancer was induced by p-DAB. The activity of GS was evaluated along with the relative expression of mTOR, β-catenin, MMP-14, and GS genes in liver samples and HepG2 cells using qRT-PCR. Moreover, the cytotoxicity of the NH3 scavenger phenyl acetate (PA) and/or GS-inhibitor L-methionine sulfoximine (MSO) and the migratory potential of cells was assessed by MTT and wound healing assays, respectively. The Swiss target prediction algorithm was used to screen the mentioned compounds for probable targets. The treatment of the HepG2 cell line with PA plus MSO demonstrated strong cytotoxicity. The post-scratch remaining wound area (%) in the untreated HepG2 cells was 2.0%. In contrast, the remaining wound area (%) in the cells treated with PA, MSO, and PA + MSO for 48 h was 61.1, 55.8, and 78.5%, respectively. The combination of the two drugs had the greatest effect, resulting in the greatest decrease in the GS activity, β-catenin, and mTOR expression. MSO and PA are both capable of suppressing mTOR, a key player in the development of HCC, and MMP-14, a key player in the development of HCC. PA inhibited the MMP-14 enzyme more effectively than MSO, implying that PA might be a better way to target HCC as it inhibited MMP-14 more effectively than MSO. A large number of abnormal hepatocytes (5%) were found to be present in the HCC mice compared to mice in the control group as determined by the histopathological lesions scores. In contrast, PA, MSO, and PA + MSO showed a significant reduction in the hepatic lesions score either when protecting the liver or when treating the liver. The molecular docking study indicated that PA and MSO form a three-dimensional structure with NF-κB and COX-II, blocking their ability to promote cancer and cause gene mutations. PA and MSO could be used to manipulate GS activities to modulate ammonia levels, thus providing a potential treatment for ammonia homeostasis.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Aly Nageh
- Fertility and Assisted Reproductive Techniques Unit, International Teaching Hospital, Tanta University, Tanta, Egypt
| | - Amany I Youssef
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Magda Youssef
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohamed Abd El-Rahman Ahmed
- Department of Clinical Pathology, Military Medical Academy, Alexandria Armed Forces Hospitals, Alexandria, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
49
|
Adhikary A, Mukherjee A, Banerjee R, Nagotu S. DRP1: At the Crossroads of Dysregulated Mitochondrial Dynamics and Altered Cell Signaling in Cancer Cells. ACS OMEGA 2023; 8:45208-45223. [PMID: 38075775 PMCID: PMC10701729 DOI: 10.1021/acsomega.3c06547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 10/08/2024]
Abstract
In the past decade, compelling evidence has accumulated that highlights the role of various subcellular structures in human disease conditions. Dysregulation of these structures greatly impacts cellular function and, thereby, disease conditions. One such organelle extensively studied for its role in several human diseases, especially cancer, is the mitochondrion. DRP1 is a GTPase that is considered the master regulator of mitochondrial fission and thereby also affects the proper functioning of the organelle. Altered signaling pathways are a distinguished characteristic of cancer cells. In this review, we aim to summarize our current understanding of the interesting crosstalk between the mitochondrial structure-function maintained by DRP1 and the signaling pathways that are affected in cancer cells. We highlight the structural aspects of DRP1, its regulation by various modifications, and the association of the protein with various cellular pathways altered in cancer. A better understanding of this association may help in identifying potential pharmacological targets for novel therapies in cancer.
Collapse
Affiliation(s)
- Ankita Adhikary
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Riddhi Banerjee
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
50
|
Daisy Precilla S, Kuduvalli SS, Biswas I, Bhavani K, Pillai AB, Thomas JM, Anitha TS. Repurposing synthetic and natural derivatives induces apoptosis in an orthotopic glioma-induced xenograft model by modulating WNT/β-catenin signaling. Fundam Clin Pharmacol 2023; 37:1179-1197. [PMID: 37458120 DOI: 10.1111/fcp.12932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Glioblastomas arise from multistep tumorigenesis of the glial cells. Despite the current state-of-art treatment, tumor recurrence is inevitable. Among the innovations blooming up against glioblastoma, drug repurposing could provide profound premises for treatment enhancement. While considering this strategy, the efficacy of the repurposed drugs as monotherapies were not up to par; hence, the focus has now shifted to investigate the multidrug combinations. AIM To investigate the efficacy of a quadruple-combinatorial treatment comprising temozolomide along with chloroquine, naringenin, and phloroglucinol in an orthotopic glioma-induced xenograft model. METHODS Antiproliferative effect of the drugs was assessed by immunostaining. The expression profiles of WNT/β-catenin and apoptotic markers were evaluated by qRT-PCR, immunoblotting, and ELISA. Patterns of mitochondrial depolarization was determined by flow cytometry. TUNEL assay was performed to affirm apoptosis induction. In vivo drug detection study was carried out by ESI-Q-TOF MS analysis. RESULTS The quadruple-drug treatment had significantly hampered glioma proliferation and had induced apoptosis by modulating the WNT/β-catenin signaling. Interestingly, the induction of apoptosis was associated with mitochondrial depolarization. The quadruple-drug cocktail had breached the blood-brain barrier and was detected in the brain tissue and plasma samples. CONCLUSION The quadruple-drug combination served as a promising adjuvant therapy to combat glioblastoma lethality in vivo and can be probed for translation from bench to bedside.
Collapse
Affiliation(s)
- Senthilathiban Daisy Precilla
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Krishnamurthy Bhavani
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University, Puducherry, 605 014, India
| | - Thirugnanasambandhar Sivasubramanian Anitha
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, 607 403, India
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605 014, India
| |
Collapse
|